
AD AO77 14j1 OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS F/S 9/2
METHODOLOGIES FOR COMPUTER PROGRAM TESTINS.(U)
AUG 79 B CHANORASEKARAN • L J WHITE AFOSR—77—31416

UNCLASSIFIED O5URF—76O722/7B’e7~ 1 AFOSR—TR—79—1095 NI.

F UPU _

~~~~~~~ E i!!Ufl. IDD~I A



_ _ _ _

_ _ _  

/

N*T~ONAL AI~~~AU O~ STA?~~~OS
-a-t re . •t Ir~ ‘r ç

~~’ 
..Y



I ~~~ R 1Z. 79~~1O95 ’
RF project ~~~~~~~~~~~~I Finel Report

*1 ,

~

~~ the
- 

~~ ohio
~~ state
© urthiersity

res arch f ., ~~~~~~~~~~~~

1314 Ièvsw rasd
oo~~~~~~cNo

43~ 2

M~ThODOLOOIE8 FOR CG4WYFR T’F’OGRAI4 TE~3TflP3

:
B. thandr..cek*ran and 1. 3. White

Dep .rtaent of C~~~uter and Information Science
$4

For the Period
July 1, 1977 - 3 une 30, 1979

4. __

~~~ U.8. ATh FORCE
— Air Force Office of Scientific Research

Boiling Afl , D C . 20332 r~ DC-. Grant No. 77-3~16 II—

August 10, 1979

.~~~~ ~~~~~.d3At~ibiitii~

I
_ _ _ _

~~

9 11 27 035
___________________________ —~

‘ 5~ ‘,‘ ~
.~ • S. ~~~ ~~S* ~~~ ~~ & .t NP..., ;. . i~ . .,.j,

REP9~~ DOCUMENTATION PAGE
~JEFOR ~~~COMPL~~TING) ORM

U O V Y A C C I~~~IOP~ NO ~ • FC~~~t N1~t C*T * LO G NUMSt ~~

AFOSR
_ _ _ _

S. ~~~~~~ ~~~~~~~~~~~ - - , ‘~~~~s . .. r.. F -1 $U*,.,,.. rr~’y~wy 0

~~~~~ ~~~~~~~~~~ y~~ ~~~~~~~~~~~~~~~~~ 
•~~ ; :J ~ ’. : ~ . i : ’!:~~; .  I ~I n&1 / -

I, r i~~/ ~ O~~~I’4c~ O~~G *EPO~~1 .d 14St0

and ~ e 

J

A~~~~ H- 7 7—3 4 1~~
• p I -,lP1.l ..~~. ~~~~~~~~~~~~~ ..~~~~ 

-— 
~~~~w r .  ia $~

:‘~~~ ~~
‘ -

~~~~ ‘~ ‘~~~~r~~t~ 
1 * S  •.~~~~~ ~ S. S.~~IdSIll

~i t i ~):l , i~ 1i. ~~~~~~~ :‘.C~aJ . . —~—-‘.. 

-

, h1~ ~.~~‘LT ~ 
61 1(L’1

~‘ S.. .— . •~~~
. f N &~~ *s. ’ £ ‘ ~~- a I s s  ~~

r ~ r e  ~~ r ot :~c t c r t  t c ~~~~e t r ~ ~~ /~ AUg~~~~~Q~ ~~~9
~~~~~~ 1 ~ A~~H , ~~~~~ ri ~’t , DC .‘033.’ Nu~~~U*~~P *a~~~

127

... ~~~~~~~~ ~~~~~~~~ c~~ -~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~.- .

/. — .~

‘
/ / ~~~~ ~~~~ V T 1)

_. . / (i~ . ~~p . &c’~.~~ a~~~~~. ~~~~~~~~ s, .
J s ..(:’, ~ e

‘ 5 P S. ‘. 1 w f s , ’ • - ‘ ~~~.

~r p-~~- 1!.~’ r’~1’~~..~ ; di~ tr~~ .~’ i~’~ un.1 i~~ ~. ‘J .

• ‘s A ~5~ . $~ •! P. • • 1 •~ s HI~~.S 30 . 51 lP.,~~’. i,... .~~.‘.‘

7~ ~~ ‘~X-~
/

1
:

PS 5 j1’5’ ~ w (s , La~ c j

‘~~ •ç • T h a ç -.. ,., .~. .. • 4 ‘ V .. .,....n a’V Pe— ’ : ., , •~.,.. - ,_• ,•..

c3~ p~~~ r pr ’. r’t~ testing . 1~~~J~1:; errors , ic~~i.n ~~~~~~~~~ strategy, module
tet~~

1 .i~~. pro.~rw t”sting tools

30 & Ø S ~~“•‘
...., •• •~ds If .‘4V~~•44~~ ~ Sd l.I*.’ipfp P.~ 5141*

, This r.’p~ rt stu21~arizes o,fr research , ov’ei a two—year period ,’ on c~~puter
program ~~~~~~~~ in particular the developsent of a strategy called the
Do~sain Testing 3trategy. For a large and importan t class of programs, this
strategy enab 1e~ the generation of teat data which can test , in principle ,
for all errors in the contro l flow of a program . Among the const raints for
practical application of the strategy is that the predicates that affect the
co~~ r~ 1 ~1..’w are linear in the input variables. The extension of the~atr ate~~ “

(continued on back) ~~~ —~~

S - SDD
~.. 1473P~ UN C LAS SIF IH)

(

5~~

~~~~~~ t~~;)7 $tCuø ” v CLA$$ , I ICS? IO w ~P ~~~~~~ ØS(~P ~~~~~~~~~~~~~~~ P. .... .

- -



- -- ~~~~--~~~~~ -. --- - - - -~~ - -- - -~~~~~~~~~ -- - - - - - - - -~~~~~~~~~-~~ • • ~~~~~~~~~~~~~~~~~~~~~~ — - -~~~-—— - - -~~~~~

C’ •
~~

~~~~~~~ ~~ T-J.~ r ~~~~~~~~~ o:’ progr&~n.s i~ presented. ~~~~ sensitivity of the

~~ ~~~t~~-~’ : ~ in certain parameters is discus~ed~ -~~~e i~plemen-

~~t i ’ n ~ ~ ~ i 1~~ ~~~~~ tcs generate test lata using this strategy is

N

~NCL,\~~ 1FI1-J)
It ~~ Y C L*IIl’’~ I’IO*l o~ ?H VS Psot’.,,., D.. IJ~I .PWV

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~—-----—_ --_ -~~~~~~-S~~~~~~~-_- - ~~~-- - ~~~ -~~~~~~~~~~—- - - -

r”~ ~~ ~~~~~~ ~~~~~~~
- - — - - - — -— ~~~~~~~~~~~~ —

-; .~~~~~~

I
‘-

~

-

~~~~~ 
I

FINAL TEC 1*flCAL REPORT

AFOSR GRANT - 77—3416

FOR PERIOD
1 July 77 - 30 June 79

PRINCIPAL INV ESTIGATORS : 4
B. Chan draseka ran

Lee 3 . Whit. / • • -

D.partm.nt of Computer & Information Science
The Ohio Stat. University

Columbus, Ohio 43210

CONTENT S

I. INTRODUCTION 1

II. THEOR.ETICAL ISSL.ES 1

11.1. Domain Testing Strategy 1

11.2. Err or Analy sis 2

11.3.  Su ary of Basic Results 3

11.4. Extension of Strategy to Modules 4

I I I .  1MPL~~1ENTATION OF A PROTOTYPE TESTING SYSTEM B

IV. OTHER TECHNICAL ACTIVITIE S 9

v. PUBLICATIONS FROM THIS RES EAR CH 9

APPENDIX A

APPENDIX B 
• . - ~ ‘~ : ‘~~ 

-

APPENDIX C ~ ~~~~~~~~ :~.:‘ 
:. - - 

• , •
~
.. - -. -~ : .1 t~

~~ 
- 

~~~
.‘

~ -
L : -

~~~~~~~~~~ t7b )s
APPEND IX D 

~~: - ~ 
t L~’- ’ ,

~ 
~~~~~~~~

• ~~~~~~
Q f f ic er ‘S

A. ~

-— — ~~- ~~- — —--— - - - - — -
~~~-



_ - -  ~~~~~~~~~ - ~~~~~~~~~~~~~~ - - —~~~~~-~~~- —~~~~~ - - --—- -- - -~~~~~~ -

FINAL TECHNICAL REPORT , AFOSR GRANT 77-3416

FOR PERI OD 1 July 1977 — 30 June 1979

I. INTRODUCTION

Most of the emphasis in our work during the two years has been on reliable
software in general , and program testing in particular. ~Ie have developed a
testing strategy called ~~~~~ Testing Strategy which is very promising for a
large class of data processing programs . Our efforts have been devoted to
both theoretical and practical aspects of the strategy. At the theoretical
level, we have delineated the precise conditions under which the strategy is
guarant eed to detect certain classes of errors , specified the sensitivity of
the strategy to certain error parameters in the choice of test data , and
obtained prelim inary results on extending the strategy to large programs con
structed out of modules of small prograrts. At the practical level , we have
been developing a prototype test system based on the strategY .

In this Report , we shall take the approach of presenting the main results
obtained in brief , intuitively meaningful terms and leave the technical
details to several appendices. Sc~ e of these appendices are copies of paper s
published in the open literature , and some are technical reports.

THEORETICAL ISSUES

I t . 1. Domain Testing Strategy

Cc~ ruter programs contain two types of errors which have been identified as
computation errors and domain errors. A domain error occurs when a specific
input follows the wrong path due to an error tn the control flow o’ the pro-
gram . A path contains a corputation error when a specific input f5~llows the
correct path , but an error in gone assigrunent statement causes the wrong func—
tLon to be computed for one or more of the output variables. A testing stra-
tegy has been designed to detect domain errors , and the conditions under
which this strategy is reliable are given and characterized . A by—product
of this domain strategy ~ q a partial ability to detect computation errors.
It i s  the objective of this study to provide an analytical foundation upon
which to base practical testing implementations .

There ar. limitations inherent to any testing strategy, and these also constrain
the proposed domain strategy . One such limitation might he term ed coinciden-
tal correctness, which occurs when a specific test point follows an incorrect
path , and vet the outout variables coincidentall y are the sam e as If that
test point were to follow the correct path. This test point would then be
of no assistance in the detection of the domain error which caused the control
f low change. No test generation strategy can circtunvent this problen .
Another inherent testing limi tation has been previously identilied as a missing
path error, in which a reçuired predicate does not appear in the given pro-
gram to be tested . Especially if th,is predicate were an equality , no testing
strategy could systematically determine that such a predicate should be prerent.

The control flow statements in a computer program partition the input space
into a set of mutually exclusive 4omalna, each of which corresponds to a
particular program path and consists of input data points which cause that path
to be executed . The testing strategy generates test points to examine the
boundaries of a domain to detec t whether a domain error has occurred , as either
one or more of these boundaries will have shifted or else the corresponding

.4 

—-~~~~~~~~~~~~~ - - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -— S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2

predicate relational operator has changed . If test noints can be chosen within
£ of each boundary, the strategy is shown to be reliable in detecting domain
errors of magnitude greater than c subject to the following assumptions:

(1) coincidental correctness does not occur;
(2) missing path errors do not occur ;
(3) predicates are linear in the input variibles ;
(4) the input space is continuous .

Assumptions (1) and (2) have been shown to be inherent to the testing process ,
and cannot be entirely eliminated. However, recognition of these potential
problems can lead to improved testing techniques. The domain testing method
has been shown to be applicable for nonlinear boundari~s but the number of
required test points may become inordinate and there are complex problems
associated with processing nonlinear boundaries in higher dimensions . The
continuous input space assumption is not really a limitation of the proposed
resting method , but allows the param~.ter t to be chosen arbitrarily small.
An error analysis for discrete spaces is available and the testing strategy
has keen oroved viable as long as the size of the domain is not comparable
to the discrete resolution of the space.

Next let us consider two further assumptions :
(5) predicates are simp le ; and
(6) adjacent domains compute different functions.

If assumptions (5) and (6) are imposed , the testing strategy is considerably
simpl ified , as no more than one domain need be examined at one time in order
to select test t~oints. Moreover , the number of test points required to test
each dn~~in grows linearly with both the dinens ionalitv of the input space
and the number of predicates along the path being tes ted .

The onF; completely effective testing strategy is an exhaustive test which
is totally impractical. The domain testing strategy offers a substantial
reduction in the  high cost of conouter program testing , and yet can reliably
detect a major cu ss of errors which have been characterized . In addition ,
other types of errors can he detected , such as coinnutation errors and missing
path errors , but this detection cannot be guaranteed .

The domain strategy is currently being implemented , and will be utilized as
an experimental facilit y for subsequent research. A most important contri-
bution would be to indicate both prograsuning language constructs and program—
ming techniques which are easier to test , and thus produce more reliable soft-
ware .

The most comprehensive presentation of results to date is available in 113, [3],
and (6]. (1) and (3] are attached as appendices to this report.

II. 2. Error Analysis

The objective is to provide an error analysis of the domain testing strategy .
It has been shown that some border shifts will escape detection by the strategy ;
this occurs because either the test points are not selected appropriately, or
else the border shift is too close to the given border to be detected by the
selected test point. An error analysis will indicate the best locations for the
test points.

- — - — - --- . 5- ’ —5- .- -- -- —-- -5 - - -- -“--5—— - - - 5 .— — ---5---- - - -



‘ —-5- - -55-

3

The strategy was developed for continuous spaces, but computer representation
may have to be examined as a discrete space in order to assure us that roundoff
will not introduce unacceptable errors. It has been shown that there are some
domains in a discrete space which cannot be tested by the strategy , but these
are pathological cases where one of the domain dimensions is on the order of the
lattice resolution. Moreover , a simple computation can be made to indicate when
this condition exists for a given domain.

An error analysis of domain borders is needed to resolve the following questions:
i) How small should £ be chosen in selecting an OFF test point for linear

bor der s, and where are optimal locations for the test points?
ii) We required the OFF test point for a given bordor to satisfy all

inequality borders except that being tested ; how do potential errors
in other borders of the domain affec t this requirement?

iii) What are the difficulti es in applying domain testing in a discrete
space or in a space in which numerical values can only be represented
with finite resolution , and can these difficulties be circumvented
by taking reasonable orecautions with the method?

These and other error analysis problems are dealt with in detail in reference
(2] (s.c list of publications from existing research , Section V.) Chapter 6
of Appendix A gives a capsule su~~~ry of the error analysis results.

i i .  3. Summa ry of Bastc Results

The basic goal of this research is to rep lace the intuitive principles behind
current testing procedures by a methodology based on a formal treatment of the
program testing problem . By formulating the problem in basic geometric and
algebraic terms , we have been able to develop an effective testing methodology
whose capabilitie s can be precisel y defined . In addition , since program testing
cannot be completel y effective , we have identified the im itations of the
strategy . In several cases these limitations have proven to be theoretical
problems inherent to the general provraxs testing process.

The main contribution of this research is the develonnent of the domain testing
strategy . Under certain well-defined conditions the methodology is guaranteed
to detec t domain errors in linear borders greater than some small magnitude c.
Furthermore , the cost , as measured by the number of required test points , is
reasonable and grows only linearly with both the dimens ionality of the int ut
space domain and the number of path predicates. Domain testing also detects
transformation errors and missing path errors in many cases , but the detection
of these two classes of errors cannot be guaranteed .

Domain testing has also been extended to classes of nonlinear borders, and we
have shown that the wethodologv generalizes to any class of functions which
can be described by a finite number of parmmeters . t’nfortunatelv , nonlinear
predicates pose problems of extra processing which prc~hably preclude testing
except for restricted cases. For example , just finding intersection points
of a set of linear and nonlinear borders can require an inordinate amount of
processing.

Coincidental correctness is a theoretical limitation inherent to the nrogrmm
testing process , and we have argued that it prevents any reasonabl e finite
testing procedure from being comnietely reliable. In particular , the nossi—
bility of coincidental correctness means that an exhaustive test of all points
in an input domain is theoretically required to preclude the existence of
computation errors on a path. Within the class of all computable functions

~~~~~~~~~— —‘— — - - 5-~~~~~ .--5-- - ~~~~~~~~~~ — . -- —~~~~~~~ - -- -~~~~~ -- - -—--~~~~~~~~~~~~~~~~ . -~~~~~~ -~~ -5- - - —-- - .— - - - -—


4 5

there exist functions which coincide at an a r b i t r a r i ly large number of point s ,
but if there is sufficient resolution in the output space, coincidental correct-
ness should be a rare occurrence for functions commonly encountered in data
processing problems.

The :lass of missing path errors . particularl y those of reduced ditnensionality ,
has proven to he another theoretical limitation to the reliability of any finite
testing strategy . Although our methodology cannot Fe guaranteed to detect all
instances of this type or error , it can be extended to detec t some well—defined
subclasses of missing path errors . Unfortunately , the extra cost of this
modification may be unacceptably high . Our analysis of missing path errors
has shown that the cause of the difficulty is that he program does not contain
any indication of the possible existence of a missing path error. Therefore ,
without additional information , a reasonable testing strategy for this class
of errors cannot be formulated .

The domain testi ng strJtegy requires a reasonable number of test points for
a single path , but the total cost may be unaccentable for a large program
containing an excessive number of paths. In particular , this rtav occur for large
programs with complicated control structures containing many iteration loops .
Additional research is needed to substantially reduce the number of potential
paths .

I I . .~o. Extens ion of Strategy to Modules

The major drawback of the Domain Testing Strategy in its current state of
development is that it requires testing all of the pc~ssP”le paths thru the
program being tested . As programs increase in complexity the number of
possible paths increases dramatically . This rresents a severe practical
Constraint on the ability to test programs of reasonable size. (It should
he noted that this problem is inherent in all path oriented testing strategies ,
and not just the Domain Testing Strategy.)

One possible approach to reducing this testing problem is motivated by con-
sidering th. problem of program development . Here , too we may be faced with
.3 large, complicated , ummanageable task when the problem is considered in its
entirety . The suggested methodology in this case is to consider the overall
problem as a set cf related units , and to develop the details of the solution
around this modular structure. In a similar manner , a testing strategy could
make use of the notion of modular structure.

If different segment s of the program are developed and tested independentl y,
and later integrated to form the final version of the program (a kind of
“bottom up” approach), it would be nice if the validation information obtained
through these “unit tests” can be used to substantially reduce the amount
of testing that needs to be done when considering the entire program at
integration time . Thus, the primary justification for the development of
a method of integrating independently tested program modules in to a single
tasted prog ram is to cut down the total number of pa ths th a t need be ested ,
and to keep the total number of paths reasonable as programs incr in
complexity. A secondary justification for an independent testing tegv is
to make the testi ng procedure for a ~rógram conform to the way pro - s are
developed . By modularizi n g the testing pr oc.dure the overall task tes t i n g
a larg. program becom es more manageable.

- . 5 - - -—- ~~~~~~~~~~ --~~~~~~~~~~ ‘-5- --~~~~~~~~~~~~~~ -~~~ - - - - -’ -~~~~~~~~~~~~- - - — - - - 5

5

We def ine a module as a block of single entry single exit code, which can
..ontain an arbitrary amount of computation and internal control structure.
Us in g this charac te r i za t ion of module , we address the problem of integrating
independently tested modules into the testing of a program which incorporates
the Domain Testing Strategy. It will be useful to consider the following two
compo nents of this probl em separately .

1. Given an untested program that uses one or more modules that are known to
be correct , how can the Domain Testing St ra tegy be applied to the program in
order to take maximum advantage of the correctness of these modules .

2. Given an untested module , how much testing need be done on the module in
order to incorporate it into the Domain Testing of a complete program with a
minumum of testing overhead . Specifically , is it enough to Domain Test the
modules which are to be incorporated into the testing strategy developed in
the solution of the first problem.

In examining the first problem it is clear that the ideal solution would allow
the testing of the program to be performed with out having to consider the
complexity of the correct modules . f this can be accomplished , then when
testing the program the correct module can he treated as a form of assignment
statement. The actual control structure cf the module wouldn ’t need to be
considered. This type of solution is Intuitively appealing because it wouldn ’t
require additional testing of a block of code that is already known to he
correct. However , such a solution ~~uld only be ace’ept.able if it didn ’t result
in the loss of a large amount of the testing confidence tha t would have
been obt ained If eac h path th rough the program had been t es ted us ing the
Domain Testing Strategy .

Therefore , we shall assume that the above technique of integrating independentl y
tested modules will be used , and to analyze the types of errors which this
technique will allow to go undetected . Instead cf looking at all types of
Undetec tab le errors , howeve r , wø will only be concerned with the types of errors
tha t a complete Domain Testing of each path would have detec ted , but the
integrated approach would miss. The types of errors that complete Domain
lesting wouldn ’t detect will be assumed to be undetected using the integrated
approach also . We therefore next examine the types of errors that can occur
in a program which the Domain Testing Strategy will detect.

The puroose of the Domain Testing Strategy is to detec t errors in the control
structure of a program. There are two ways tha t an error can occur in a pro-
gram ’s control structure: the actual predicate could he incorrect , or a compu-
tation that occurs along sone path itt the program and is then used in a
p r e d i c a t e could be incorrect .Gi’:en these two types of errors the following
five cases can occur when integrating a correct module into a program being
tested . (In this context , we mean by ‘ program” the integrated code excluding
the correct module.)

1. A predicate in the program could he incorrect.
2. A computation in the program could be incorrect , and that computation

~ i used in a predicate later in the program .
3. A computation in the program is incorrect , and the computation is

used in a predicate of the correct module , but isn ’t used later in a
program predicate.

4. A computation in the program is incorrect , and the result of the
computation is not used in a predicate in either the module or the
p rogr am , hut is used in a comp~itation in the module.

_ _ _ _ -- - - - - -.- - - - --- -5—.-—— 5—- - - - - ~~- — - - - -

,iu~~r ~~ ~~~~~~~~
.~ - . .~~~ . p ~~~~~~~~~~~~~

6

5. A computation in the program is incorrect , and the result of the
computation is used in a later program computation but is not used at
all in the module.

In the first and second cases Domain Testing will detect these errors as a
shift in the input domain of the program . Sincc neither type of error would
affect the correct module , using the integrated testing approach would also
detect these types of errors. Case 5 also does not affect the correct module ,
SO the error would be detected to the extent tha t Domain Testing Is lucky enough
to catch computation errors. However , since not as many points are being tested
with the integrated strategy we would expect some degradation in testing
confidence.

~n the third case there is a possibility tha t the error would go undetected
using the integrated approach , yet would have been detected if all paths had
been Domain Tested . The problem occurs because the predicate in the correct
module that would have Ittected the error may not he executed since only one of
an arbitrar ily large number of paths through the correct module will be exe-
cuted . The fo’itth case might also go undetected with the integrated approach.
Howeve r , even if the computation in the correct module tha t uses the incorrect
computation from the program lies on the path tha t is taken through the correct
module , the error rig ht still go undetected . ThIs is a case in which both the
integrated approach and Domain Testing night miss th~ error , but once again
it .s important to note th at , using the integrated approach , it appears that
there is even l,.~ss chance of catch~mg the error than -:ith Domain Testing.

The t .pe’ of errors that right go undetected using the integrated approach ,
but would he detected ~- v ~~rain Testi ng each r~ath , are sufficiently serious
to require some rodl ftcation t~~ the method of testfng programs tha t contain
correct modules. The co~~or. feature of both types of errors (cases 3 and .

~

above) is that there Is a cc’r~putatio n error which Is actuall’: in the program ,
bu t only show s up because of i t s e f f e c t on the correct nodule . One method
of avoiding this problem would he to require that in testing the program both
the output from the program , and the values that are generated in the orogram
and used by the correct module , he validat ed . This in effect .~orresponds to
validating the inputs to the correct module , and could be accomplished in two
av s. First , an additional burden c ou l d be placed or. the oracle while testing
the program , that burden being the validation of the inputs to the correct
nodule. A second , more appealing approach would be to treat the section of
code preceding the correct module as a separate modulo w’lch itself would be
tested independently. While this section was being tested Independently its
outputs would be validated , there ’-~ validating the input s to the correct module.

For this second approach to work It must he shown t a t the independent testing
of this section is sufficient to detect the types of cc-mutation errors that
might cause Integration test problems . rh:s leads to consideration of the
second problem , identified earlier , of developing a method of separately testing
program nodules t~~ he integrated into the test4 ng of the complete program .

~~ to this point ft has been assumed that the module that is being integrated
into the program being tested is comrletelv correct. In general this will not
be the case , especially if the module has been validated through testing,
since no practical testing strategy can guarantee the correctness of a program
of module. ideally we would like to be able to use the Domain Testing Strategy
on the module , and then use the method described previously for testing the
(integrated) program without havIng to retest the paths through the module.

- - 5 - - — - —~~ ---- -5- -. -5-.- - - -5 --- - — - - -— - -— - - --- --- - - -~~~~~~~-— -~~~~~~
-=--5-

--—----— -- ~~~---~~~~- .—.- ., --—---- - - - --- . ,.—~~~~~ - - -5 , - -5----

7

Since the ultimate goal is to Domain Test the program, it is necessary for the
independent testing of the module to identify all errors in a predicate , as
well as all errors in computations that will be used later in a predicate in
either the module being tested or in the integrated program . By Domain TestIng
the module ,the errors in the predicates in the module as well as computation
errors which affec t predicates in the module , will be detected as they will
cause a shift in a border in the domain of the module. However , In general
many types of errors in the computations performed in the module might go
undetected if they aren ’t subseq uently used in a predicate in the module.

If the programs under consideration contained only linear predicates (when
viewed with respect to the entire program) then a good deal of the problem with
computation errors can be eliminated by Domain T.•sting . This is due to the
fac t that if only linear predicates are being tested then all linear computa-
tions in the module can be validated . If the module is Domain Tested then
for each subdotn.ain in the module a sufficient number of test points are gene-
rated by the testing strategy tO Spa n the space of the subdomain. Therefore ,
If the linear computations are shown to be correct on these test points then
t ese computations can be assumed to he correct for any noint in the subdomain.
This means that there can be no comoutatIon errors In a Domain Tested module
that can affect a predicate In the integrated program , so tha t an integration
test which ignored the paths in the Domain Tested module will he just as ef--
fective as a test whIch didn ’t ignore them , with respect to these kind of errors.

There can , however , still he errors In nonlin ear computations of a Domain Tested
module which affect later computations in the program . ~f the integrati on test
ignored the paths in the Domain Tested module , then it Is certainl y poss ible for
the error not to sho w up, for those paths exercised in the integrat Ion test
mar not contain the error and the set of points chosen in the unit test may
not have been sufficient to detect the error. Even if the Integration test
considered all of the paths in the module , this kind of error might still go
undetected (depending on the kind of nonlInear Ity in the computati on and the
number oi points tested), though the Increased number of test points reduce the
chances that this will happen.

~f there were linear predIcates In each module (wIth respect to the module ’s
inputs) but these predicates weren ’t necessarily linear when viewed with
respect to the entIre Program , then it is no longer the case that there can
be r’.o computation errors In the earlier module which affect a predicate in
the later module, This is because there must be a nonlinear computation in
the earlier module , and if 311 of the predicate s in tha t module were linear ,
we ~~~ not have tested enough points to guarantee the correctness of the non-
linear computation . When integrating the Domain Tested module and Ignoring
it3 paths (i.e. treating it as an asaXgt~ ent ~tatement), we may find that
the resulting output for the test poInt s chosen is correct because not enough
points were chosen to make the nonlinear computation error affec t the predicate
(which looked linear when It was tested). However , if we Domain Tested the
complete Program (ignoring modularity), this predicate would have shown up
as nonlinear and enough points would have been reoufred by the testing strategy
to detect this error .

It therefore makes a difference , when considering Independent module testing
using the Domain Testing Strategy , as to the kind of linearity restrictions
placec on the program being tested . Of course , the severIty of this problem
with resp’ect to Domain Testing is not clear , since there are serious practIcal
problem s associated with the strategy when nonlinear borders are involved .

-5 -— , -- ~~~~~~~~ - — - - .- —~~~~~~~~~~~~~ -~~~~~~~ -~~~~- , - - ,- - - --- - ___

r ~~

- ‘ ---5 ------ —-- -V

~~

__-5 -- ~~~~~~~~~~
—

~~~
--- - - ‘ - —- -  -

~~~~~ 
-

~~~~~~~

8

One additional bit of overhead that would arise in the Independent testing of

a module would be in identifying the input space of the module . Since the

module lies within the program , its input domain could consist of both Input

variables and program variables. The oracle would have to be sufficiently
knowledgable to be able to determine the correctness of the results of the
module for any values in the module ’s (as opposed to the program ’s) input

space. But this requirement doesn ’t aPpear unreasonable in view of its con-

sistency with current view s on program development .

In conclusion it appears tha t a method of testi ng modules inderende ntlv can
prove to be effective with little loss of confidence in the testIng procedure.
The major limI tations are in the restriction of the Domain Testing procedure to
only linear borders , and in the additiona l burden that is placed on the oracle
that determ ines the correctness of the testing results.

:1:. DIP LE. MENTA T: ON OF A PS~ T~ TY!’E TESTING S?ST~~f

~ e are current ’_v Imp lementing -~ procotvr ’e system as an experimental facilit y .
Thi s wIll continue to he a ma~or focus of research during the next year.

The system is composed of fIve phases , the first three are written in rL/:,
and the othe r two in Fortran . The system accepts a u-~er program written in
a subset of Ft ,’C and rform~ the Doma in Testing Strateg y on this program .

Th ere are sever~il restrIctions or the user P1 /C progr am for theoretical imp le—
menta tional reasons . work Is being done to relax these restrictions by
expanding the system and stud ying the th eo reti cal prob~ eru . The curren t re—

~rrictions are: no arrays , no su~ routines , no a p hanumeric variables , stng le
entrv ’sIng le exIt h’ocks , and only two Lnt’ut variables.

~nce the user prcgra~ is submitted to the system , Phase °ne parses the user
program and loads the parsed pr-gram into a large array , with each record
con taining ar~’roximate1v one ~tater~ent . Phase One recognizes the tyne of state-
ment , and thro~ recursIon It realizes the rang e of each tvne of control struc-
ture. PoInters in the table are set to ~ndicate the end of the control struc-
ture. There are thre e types of control structures:

(P DO loops.
(2) IF TPEN ELSE statements .
(3) F THEN statement.

Once Phase One is finished , Phase Two stePs throug h the parsed program checking
the type of statement. If the statement contains som e kind of arit~~eti:
computation , this phase then checks the linearity of the statement in terms
of t h e  variables. If the statement Is linear then the statement is put In
a standard form for fur ther proc essing. If the statement is non—linear , the
statement Is flagged .

Phase Three takes a nath through the program specified hr the user , and s~-m-
bolicallv executes the path to produce a set of predicates that describe the
path. The predicates are in terms of the in”ut variables as the result of the
symbolic executIon , and the pred Icates together form the domain of the path
in the input space.

Phase Four takes t h e  set of nredicates generated for the path , and performs
a Gaussian el Im in ation to get a description of the actual domain by wa y of
the constraints.



9

Phase Fi’.’e takes the domain generated in phase four and p lots the path domain
when there are only two input variables . Also test points are generated based
on t he border of the domain. For each border there are tue O1~ points and one
OFF point generated . These test points can then he used as inputs to test
the output and detect s h i f t s  in the domain borders.

Future extensions of the system deal with restrIctions on the user language ,
and the scope of the system . These extensions are:

(1) Allow s u b r o u t i n e .
(2) Allow more than two input variables .
(3) Allow the use of arrays and nen-ilnear expressions .
(4) Study comp ound pre dI cates.
(5) Allow airhabetic and alphanumeric variables and study their effects

on Input domaIns.
(6) Change the user and system language to allow for portabilit y and

more flexible use.

:v . OTHF_~ T E CHN I :.\. AcTIVtT :ES

~~e have r e ,~i r d e d  par tictrati on :r. nationa l and inter nst -.cna professIona l cc—
Ivi ti es on comr- jt ,-r pr o~ r am .~st  r g  a - ~ an Im p ortant co—o-’cp. nt of our r e s e a r c h .

u n d e r  t h i s  Cr a n t .  Th e f o l l o w I n g  a c t i v l t i p s  In  t h i s  c o n n e c t I o n  a re  worth
m~ nt Ion: ug .

(i) Pro~ essor Ch.’. ras *’~csr 1n , one of t ”~- PrI nc~ r’~ ~~~~~~~~ -.t igat’ r~~, was
in organ: zer , panel: -~t i n :  sec~~i ’n cha t r—.’ir at the rk’.hcu — 0! ~~~

ware  T . — t  Ing and Test hoc~ m,•nt at :on • ~.‘1d tt ~rI: -.g ~“.‘cem - .- r l~~ 8 :
F t .  Lauderda .~, F~~ i .  , under the auspices t h e  F F P .

(b) Professor Chand rtse kartp has unde r iken to ed : t a Spec to I s—ue of ti e
IEEE Tra nsa ctIo n s or. ~~~~~~~~~~~~~~~ d,’-.’ot~~t~ to p ap er s on
nrogram te st In g . t s s t  of • - e  Iitor :.i -

~~~~~~
-
~~

-. i s l o n e und er the

~nsp Ices of th e r an t . The :-~s .~e st-It viii a p p e a r e: ther in late
1979 or early l~~O.

? : R L : cA T : ° ~;s FROM THIS RESr.ARCB

(1] :.. i . ~h Ite , F . I . Cohen , B. Chandt-a-ekaran , A ho - .n Testing Strategy
for Comput er Program Test Ing ”, 0Sl~’_ C IS Research Center Technical Report .
.\uguqt 1979. (Apoendix A)

(2 L. J. ThIte , F. C. Teng , H. C . Kuo , P . ‘ . Coleman . ‘An Error Anal ysis of
the DomaIn Testing S t r a t e g y ’ , °St’—CIS R esearc !. Center Technicsi l Report.
Augu st 1979.

~3) L. I . ‘h i te and F. t . Cohen , A Domain T e s t i ng S t r a t eg y f o r Comp t e r Pro—
grem Testing ”, infotech state of the Art Re-’ort , “Sof tware T e s t i n g ” , lQ~~~,

an d 11 . [Appen dIx B]

(~~~
P . J . ~~ite , F. I . Cohen , and B. Chandrasekaran , “DiscussI on of ‘A Su rvey
of Pr ~~~ram T e s t i n g Issues ’ by John B. Goodenough”. discussant item In
R e c e n t n l r e c t ions in S o f t w a r e Technoloiy . “ T Press , 1979. [A n n e n d i x C l

(5) B . C h a n d ra s e k a r a n , “c c i f tw a r e T e c t i n g Tools ” , Comput er , March 1°7°, pp.
102 -103. (A p p e n d i x D~

(6) 1.. I . ~h i t e and F . I . Cohen , “A Domain S t ra teg y f o r Computer Program
Testing ”, to appear in Special ssue on Com-’uter Progra— Testing , I F F F
Trans. Software Fngineerlng.

—-5 — —~~~~~~~~~ - - — - - 5 -

(OSU—CISRC—TH—78—4)

APPENDIX A

A DOMAIN STRAT EGY FOR
COMPUTER PROG RAM TESTING

by

Lee .1. White , Edward I. Cohen
mnd B. Chandrasek.aran

Work performed under
Air Force O f f i c e of Sc i e n t i f i c Research

Grant 77—3416

Computer and I n f o r m at i o n Science Research Center
The Ohio State University

Col~~bus , Oh io 43210

Aulust 1978

- 5 - - -

_ _ _ _ _ _ _ _ _ _ _ _

A DOMAIN STRATEGY
FOR COMPUTER PROC RA M TESTING

Lee J. Wh ite , Edward I . Cohen , and B. Chandrasekaran

EXTENDED ABSTRACT

Computer pro grams c o n t a i n two types of e r ro r s which have been i d e n t i fi e d as
com p u t a t i o n e r rors and domain errors. A domain error occurs when a s p e c i f i c input
follows the wrong path due to an error in the control f low of the program . A path
contains a computation error when a specific input follows the correct path , bu t an
error in sone assignment statement causes the wrong function to be computed for one
or nere of the output variables. A testing ~.tra tegy has been designed to detect
domain errors , and the condi tions under which this strategy is reliable are given
and character Ized . A by—product of this doma in strategy is a partial ability to de-
tect conputation errors. It is the objective of this study to provide an analytical
:oundatI~~n upon which to base practical testing implementations .

There are im itations inherent to any testing strategy, and these also constrain
t h e proposed d u n a l r . strategy. One such limitation night be termed coinc idental
correctn ess, whIc h occurs when a specific test point follows an incorrect path ,
and yet the output variables coincidentall y are the same as if that test point were
to f ollow the correct path. This test point would then be of no assistance in the
d e t e c t : o n ci the domain error which caused the control flow cha nge. No test gener—
atl on strateg can circumvent this problem . Another inherent testing limitation has
been previou sly identif Ied as a missing

~~~~ 
error, in which a required predicate

does rio t appear in the given program to be tested . Especially if this predicate were
an equa lity , no testing strategy could systematicaEv determine that such a predicate
should be present.

The control flow statements in a computer program partition the inpu t space into
a set of mutually exclusive domains, e a h  of which corresponds to a particular pro-
gram path and consists of input data :oints which cause that path to be executed .

T The testIn g strategy generates test cints to examine the boundaries of a domain to
I. detect whether a domaIn error ha~ occurred , ~~ either one or more of these boundaries

wtll have shIfted or else the corresponding predicate relational operator has changed .
I :  test points can be chosen within of each boundary , the stra tegy is shown to
be reliable in dete’ ting domain errors cf magnitude greater than c , subject to the
foll owing assunptions :

( )  co inc~ dentai correctness does not occur;
(2) m1ss iri~ path errors do not occur;
(3) predicates are linear in the input variables;
(.) the input space is continuous.

Assumptions (1) and (2) have been shown to be inherent to the testir~ proc ess ,
and cannot be entirel y eliminated . However , rec ognition of these potentia l problem s
can lead to improved testing techniques. The domain testing me t hod has been shown
to be app l i c a b l e  for  n o n l i n e a r  boundaries , but  the number of required test points
no-, becot~e Inordinate and there are complex  p r o b l e ms assoc ia ted with processing non .
linear boundaries in hig her dimensions . The continuou s input space asst~ ption Is
not  r e a l ly  a l i m i t a t I o n  of the proposed t e st i n g  method , but a l lows the parameter
to b e chosen arbitraril y small. An error analysis for discrete spaces is available

ii I

- . --—-- --



—“-- -5--— ~~~~~~~~~~~~~~~~~~~~
— _ .

~~~~~~~
‘“ “ — — — -•

and the testing strategy ha. been proved viable as long as the size of the domain is
not comparable to the discrete resolution of the space.

N ext let us consider two f u r t h e r assumptions :

(5) predicates are simple; and
(6) adjacent domains compute different functions .

If assumptions (5) and (6) are imposed , the testing strategy is considerably
simplifisd , as no more than one domain need be exam ined at one tim. in order to
select test points. Moreover , the number of test points required to test ea~ih
domain grows linearly wi th both the dimansiortality of the input space and the
number of predicates along the path being tested .

The only comple t e ly e f f e c t i v e t e s t ing s t ra tegy is an exhaust ive test which is
totally impractical. The domain tasting strategy offers a substantial reduction in
the high cost of compu ter program testing , and yet can r e l i a b l y de tec t a major c lass
of errors which have been characterized . In addition , other types of errors can be
detected , such as computation errors and missing path errors , bu t this de tec t ion
canno t be guaranteed .

The domain strategy is currently being implemented , and ~.-ill be utilized as an
experimental facility for subsequent research. A most important contribution would
be to indicate both progran~~ing language constructs and progr~~~ing techniques which
are easier to test , and thus produce more reliable software.

i i i

-l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1

’ 
-- -“---5. ,..- ... -5 .- -

~~~ 

- -

~~~~~~~~~

--. - -

~~~

- -5 ”

~~~~~~~~~~~~~

-“

~~

-

~~~~~

- . ---

PREFACE AND ACKNOWLEDGMENT S

The Computer and Information Science Research Center of The Ohio

State University is an interdisciplinary research organization consisting

of staff , graduate students , and faculty of many University departments

and laboratories. This report describes research undertaken in cooperation

wi th the Department of Computer and In format ion Science. This research

was supported in part by AFOSR 77—3416.

This report was f i r s t published in the Info tech S ta te of the Art

Repo r t “So f tware Test ing , ” In f o t e c h I n t e r n a t i o n a l Ltd , Ma ide n head , UK (1978).

1.i

iv

- -- -~~~~~~~~~~~~~~~~~

-5 -~~- - . -”- -5—- -~~~~~— - —

TA3LE OF CONTENT S

Extended Abstract ii

Preface and Acknowledgme nts iii

Chapter 1.
In t roductIon 1

Chapter 2
Background and Preliminaries 5

2.1 Progr.aming Language Assumptions 5
2.2 Program and Path Predicates 7
2.3 Importance of Linear Predicates 10
2.4 Input Space Structure 12

Chapter 3
Error Class i f ica t ion and Theoret ical L imi ta t ions 18

3.1 Definitions of Types of Error 18
3.2 Fundamental Limitations 20

Chapter 4
the Domain Testing Strategy 23

L 4.1 The Two-Dimensional Linear Case 25
‘ .2 N—Dimensiona l Linear Inequal i t ies 32
4.3 Equality and Nonequality Predicates 34

I .
4.4 An Exampl. of Error Detection Using the Domain Strategy 36

Chapter 5
Extensions of the Domain Testing Strategy 46

5.1 The General Nonlinear Case
-

46
5.2 Adjacent Domains Which Compute the Same Function 49
5 . 3 Domain Testing for Compound Predicates 53

Chapter 6
Error Analysis of Doma in Borders and Discrete Spaces 57

6 .1 An Error Measure for Test Point Selection 59
6 . 2 Interact ing Border Segments 60
6 . 3 Discrete Space Analysis 62
6. 4 Extensions of E r ro r Analy sis to Higher Dimensions 63

Chapter 7
Conclusions and Future Work 66

List of References 69

V

p

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CHAPTER 1

INTRODUCTI ON

Program testing is an inher.ntly practical activity, since every

computer program must be tested before any confidence can be gained tha t

the program performs its intended function . Some of the best designed

software has required that nearly as much e f for t be spent planning and

imp lementing the testing process as was invested in the actual coding.

Wha t the practitioner needs are bette r guidelines and systematic approaches

in the design of the testing process to replace the ad hoc approach which

is now so prevalent in the testing of computer software .

It would be Ideal if there existed a “theory of testing ” which could

be used to rigorously selec t program test points. The problem has unfort-

unately proven so intractabl , tha t no comprehensive testing theory exists.

Research by Goodenough and Gsrhart (7) and Howden (8 , 9) has resulted in an

accepted body of th.ory concerning testing, and has provided a rigorous basis

for further research in this area.

The objective of this paper is to present a methodology for the automatic

selection of test data. Under appropriate asst ptions , this methodology viii

generate test data which viii detect a particular class of errors in a

program , viz. , “domain errors” as def ined by Howden (9). The proposed metho-

dology is also described in greater detail in Cohen and White (3 1 and in Cohen (4].

The goa l of the testing process is limited to the successful detection of

___________________ - -—~ ~~~~~.“- --~~ ____ - - - - -5—— - . - - - ~—.-_-_~

_____ - --5 - —.——- --,-.---5—,-- —-- - -5—

2

a program error if any exists. Any attempt to identify the error , its cause ,

or an appropriate correction is properly categorized as debugging, and is

beyond the scope of our goal in the testing process . Thus testing is essen—

tially error detection , while debugging is th. more difficult proces. of

error correction . Of course , in practice these two a ctivities usually

overlap and are frequently combined into a single testing/debuggin g phase in

the software development cycle.

Ari t~~ ortant assumption in our work is that the user (or an “.raele ”)

is available who can decide unequivocally if the output is correct for the

specific input processed. The oracle decides only if the output values

are correct, and not whether they are computed correctly . I f they are

incorrect , the oracle doe s not provide any information about the error

and does not give the correct output values.

The organization of the report is as follows. In Chapter 2, some

prel iminary concepts are defined arid d i scuRsed . Some assumptions must

be made concerning the language in which the give n computer program is

written , and the ramificati ons of certain language constructs are explored .

The important concepts of program path and path psedicates , together

wi th domains , are defined and characterized . The case of linear

predicates is given particular emphasis , since , in that situation , the

domains assume the simple form of convex polyhedra in the input space .

Logical errors in a computer prOgram can be viewed as belonging to

one of two classes of errors , viz., “domain errors ” and “computation

errors ” . Informally , a osain error occurs when a specific input follows

the wrong path due to an error the control flow of the program. A path

contains a compu tation error when a specific input follows the correct

path , but an error in some assignment statement causes the wrong function

to be computed for one or more of the out put variables.

- - -__
_ _ _ _ _ _ _ _

3

The third chapter rigorously defines these error classes , and explores

th, ways in which they might arise . The proposed methodology , called the

domain str ategy, ii designed specifically to detec t domain errors . In this

chap ter, we will, discuss two fundamental limitations inherent to any finite test

strategy. Once such limitation might be termed coincidental correctness.

This occurs when the computation for a specific test point is incorrect , but

th. output value happens to coinc ide with the correct value . This test poin t

would then be of no assistance in the detection of the domain error which

caused the cha nge in control f low . Another inherent test ing limitation has

been identified by Howden [9] , and might be called a missini path error , in

which a required predicate does not appear in the given program to be tested .

This could result in a situation where no testing strateg y can systematically

deter mine that such a pr edicat . should be pre sent.

The domain strategy is examined in Chapters 4 ano 5. This strategy is

r developed by utilizing the structure of the input space corresponding to the

Li prog ram . More specif ical ly , the control flow par t i t ions the input space into

a set of mutually exclusive domains. Each domain correspond s to a particular

path in the program in the sense that the set of input data points in that

domain will cause the corresponding path to be executed . The strategy proposed

is path—oriented ; in testing a particular path , we are acutally testing the

computations performe d by the program over a specific input space domain.

Given a particular path , the f orm of the boundary of the corresponding

domain is completely determined by the prudica tes in the control statements

encountered in the path. Thus, an error in such a pred icate will be

reflected a~ a shift in the boundary of the corresponding domain . The

- -- - - -5-

4

testing strategy to be described tests a path for domain errors , i . e . , detects

domain boundary shifts by observin g the output va lues for a finite number of

test data having a prescribed geometrical relationship to the entire d omain

and its bo~irtdarv . These output values ar e computed by executing the

sequence of assignment s t a t emen t s constituting the path. The method requires

no information other than the successfully compiled program for selecting

e f f e c t i v e test data. Thus the problem has been converted from its usual form as

an informal study of programs and programming to a more formal investigation

of the geometry of input space domains .

The strategy is initially described for th , case of linear p:eiVcates

and a two—d imensional input sp~.e. For the linear case , it is shown that ,

under appropriate assumptions , the number of test points to reliably test a

domain grows only linearly with the number of predicates along the path and

with the dimensionality. The techniques are tnien extend ed to N d imensions ,

and various other extensions are considered , inc luding nonlinear predicates .

A domain boundary error analy sis is pres ented in Chapter 6, which is helpful

in choosing the best locations for teat points. The application ~f the domain

strategy in discrete spaces is analyzed to stud y the effect of roundoff error

in selecting test points.

In the concluding Chapter 7 a number of open questions generated by this

investi gation are presented , and the prospects for the practical application

of the domain testing strategy are evaluated .

—~~ -~~~~~~~~ — -- -~~~~~~ . - -5 - -5

CHAPTER 2

BACKGROUND AND PRE L IMINARIE S

2.1 Progra ing Language Assumptions

In order to investigate domain errors, we need to consider the language

in which programs will be wr it ten . The control structures should be simple

and concise , and should resemble those available in most procedure—oriented

languages. For simplicity we assume a single real—valued data type , and this

is converted to integer values for use as DO— loop indices. Because this

is a path -oriented approach , no extra control flow problems are introduced by

block structure. Thus no provision is made for block structure, as it would

only add extra bookkeeping to keep track of local variables and block

invocation or exit.

A number of programeing language features are assumed not to occur in the

programs we are to analyze for domain errors. The first feature is that of

arrays ; despite the fact that arrays coamonly occur in programs , a pred icate

L which refers to an element of an inpot array can cause major complications

(P~..~~oorthy (11]). A second class of language features which will be exc luded
r

in our analysis is that of subroutines and functions. The problems of side

effects and of parameter passing pose difficulties for domain testing. The

third class of features which are not currently analyzed by domain testing

include nonnumer ical data types such as character data and pointers. These

are admittedly very important features , and f ur ther research is needed to

investigate whether these features pose any fundamental limitations to the

domain testing strategy .

Since input/output processing is so closely linked to a machine or compiler

environment, we will assume that all I/O errors have previously been eliminated .

Thus only the most elementary I/O capabilities are provided; input is provided

by a simple READ sta tement , and ou tpu t is accomplished wi th a simple WR ITE

statement.

_ _ _ _ _ _ _ A


~~~~~~~~~~ --—~~~~ - -~~~~~~~~~-~~ -5 — - -5~~—- - : . — - 5-- 5 -~~~-~~--- -~~~~

6

The types of control flow constructs investigated in this research include

sequ-’nce , alternation , and iteration control~ Since the analysis is path—

oriented , CO—TO statements could be included without adversely affecting any

results , except that program paths could become quite complex .

All computation is ac~osplished by means of a r i thme t i c  assignment state-

ments which also provide the basic sequential flow of control. In each

statement a sing le variable is assigned a value . The right hand side of an

assignment statement is an arithmetic expression using variables , c ,nstants ,

and a set of basic arithmetic operators (+, — , 
a , / ) ,

The general predicate form used for control flow is a Boolean combination

of arithmetic relational expressions. The logical operators OR and AND are

used to form these Boolean combinations. Each arithmetic relational expression

contains a relational operator from the set (- , ‘, — . ‘, ~~, ~~). These operator s

form a complete set , and thus the logical operator NOT is unnecessary. If a

predicate consists of two or more relational expressions with Boolean operators ,

then it is a compound predicate. A simple predicate consists of just a sing le

relational expression.

The alternation type of control flow is achieved by using the IF—THEN—

ELSE-ENDIF construct. The conditiona l associated with the IF statement is a

general predicate. Any well—formed program segment , including the null  program

segment , can be used in the THEN and ELSE portions of the IF construct. The

ENDIF statement Is just a delimiter for the IF construct , which clarifies

the nesting structure and eliminates any potentially ambiguous ELSE clause .

A general iteration construc t is included which consists of a DO

statement , loop body, and ENDDO del imiter .  The DO state ment can be in one of

three forms:

1) DO I — INIT , FINAL, 1NCR ;

2) DO WHILE (general predicate);

3) DO I — IN!!, FINAL , INC R WHILE (general pr edicate).



~~~~~~~ - - ~~~~~- -

1~
The loop body can be any well-formed program segment , and the ENDDO Is just a

delimiter to clarif y the scope of the iteration .

The variables used in a program are divided into three classes. If a vari . ible

appears in a READ or WRITE statement , it is classified as an input or output

variable respectively; all other variables are called program variables.

In order to produce a clear delineation between the three types of variables ,

we assume tha t a given variable belongs to only one of the above three classes.

~.2 Program Paths and Path Predicpt.s

A program can be represented as a directed graph C — (V A) , where V is

a set of nodes and A is the set of arcs or directed edges between nodes . In

the language discussed in Sectina 2.1, we hay, d finad a set of basic prograr

elements which conaibts of a READ , WR ITE , assignment , IF , and DO statement ,

together with the ENDIF and ENDDO delimiters. The directed graph representation

of a program will contain a nod. for each occurrence of a basic program element,

and an arc for each possible flow of control between these elements. While THEN

and ELSE statements do not explicitly appear in the digraph , the actiona

associated with them will be represented as nodes in the digraph .

A walk in a digraph is defined as an alternating sequenc ~ nodes and

arcs (v
1 A 12 V

2
A23, A...~. l k v

k
) such tha t each arc A 1,141 La dir.cted ~~~~

node v1 to node ~~~~ A control p~th is then define d to be a walk in the direc ted

graph beginning with the node for the initial statement and terminating with the

node for the final statement . It should be noted that two walks which differ

only in the number of times a particular loop in the program is executed

will be defined as two distinc t control paths . Thus the number of con trc l paths

in a program can be infinite.

Every branch point of the program is associated with a general predicate.

This predicate evaluates to true or false , and its value determines which outcome

of the branch will be followed . A predicate is generated each time contro l

reache s an IF or DO statement in the given language . The p~Lh condition is the

- - - 5

8

compound condition which must be satisfied by the input data point in order for the

control path to be executed . It is the conjunction of the individual predicate

conditions which are generated at each branch point along the control path .

Not all the control paths cha t exist syntactically within the program are

executable. If input data exist which satisfy the path condition , the control

path is also an execution 2~~J!
and can be used in test ing the program . If the

path condition is not satisfied by any input value , the path is said to be

infeasible, and is ~f no use in testing the program .

A simple predicate is said to be linear in variables V 1, V~ , V

if i t is of the form

A V + A V + + A V ROP K1 1 2 2 n n

where K and the A
1
are constants , and ROP represents one of the relationa l

operators (‘,‘,— ,. ,‘,~~~
). A compound predicate is line .ir when each of its

component simple predicates is linear .

In general, predicates can be expressed in term s of both program variables

and input variables. However , in generating input data to satisfy the path

condition we must work with constraints in terms of only input variables.

If we replace eac h pr ogram var iable appear ing in the predicate by its symbolic

value in terms of input variables , we get an equivalent constraint which we

~~l’~ the ~r~dicat. interpreta tion. A particular interpretation is equival.nt

to the original predicate in that input variable values satisfying the inter— —

pretati..~n will lead to the computation of program variables which also satisfy

the original predicate. A single predicate can have many different interpre—

~~t ions depending upon which path is selected , for each path will in general

ConsiSt of .~ d ifferent sequence of .issignment statements. The following

program segment provides example predicates and interpretations .

9

READ A ,B;

IF A > B
THEN C — B + 1 ;
ELSE C — B — 1;

END IF;
D — 2*A + B;
IF C < 0
THENE -0;
ELSE

DO I • l,B ;
E • E + 2*1;

END DO ;
ENDIF;
I FD .2

THEN F - E + A ;
ELSE F - E - A ;

END IF;

WR ITE F;

In the first predicate , A > B , both A and B are input variables , so there

is only one interpretation . The second predicate , C 0, will have two

interpre ta t ions depending on which branch was taken in the first IF construct.

For paths on which the THEN C — B + 1 clause is executed the interpretation is

B + 1 0 or equivalently B —1. When the ELSE C - B - 1 branch

is taken , the interpretation is B - 1 0, or equivalently B 1. Within

the second IF-THEN—ELSE clause , a nested DO— loop appears. The DO—loop is

executed :

no times if B ~ 1

once if 1 < B < 2

twice if 2 ‘- B < 3

etc.

Thus the selection of a path will require a specification of the number of times

that the DO—loop is executed , and a corresponding predicate is applied which

selects those input points which will follow that particular path. Even though

the third predica te, D • 2 , appears on four different pa ths , it only has one

inter pretation , 2’A + B 2 , since D is assigned th. value 2*A + B in the

same statement in each of the four paths.

- - ~~~~~ -- --5- _ _ - - --5-5— . ---~~~~~ - --5- -- - - - - -5

-~~~~~~~~~~ .

10

~.3 ~~portance of Linear Predicates

The domain tes t ing s t ra tegy becomes particularly attractive from a

practical point of view if the predicates are assumed to be linear in input
—_

variables. It might seem to be an undue limitation to require that predicate

interpretations be linear for the proposed strategy . In fact , however , as the

following discussion shows , this represents no real limitation for many - .

imp o r t a n t app l i ca t ions.

A numbeL of authors have provided data to show that simple programeing I
language constructs are used more often than complex constructs. I(nuth (10]

studied a random sample of FORTRAN programs and found that 86~ of all assign-

ment statenents were of the forms

V i
— V .~ +

~

.

or V 1
— V , — V

3
.

Als o ~OZ of all DO loops in the programs contained less than four s ta tements .
- -

El shof f (5 ,61 studied 120 production PL/I programs and showed s imi la r resul ts ,

including the fact that 9”~ of all ar itheetic operators are + or — . and 98~

of all expressions contain fewer than two operators.

An experiment of particular relevance to the present context is reported

~n (:Ohen (.i.] using typical data processing programs , since program functions

and programeing p r ac t i c e tend to be reasonably uniform in this area . A random

sample of 50 COBOL programs was taken directly from production data processing

appl ications f~~r this study. In this static analysis each predicate is

classified according to whether it is linear or nonlinear , and the number of

Inpu t variables used in the predicat. has also been recorded. In addition , the

number of input—independent predicates were tabulated , since these predicates

do not produce any input constraints. The number of equality predicates is

also reported since these predicates are very beneficial in reducing the number

of test points required for a domain. These data are su a rir ed In Table I.

—--5--—-- -
-~~~~~ — -5— - - -. - —---—- - — -— —- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~=— ____________

11

TOTAL AVG . RANGE

Total Lines 12 ,628 253 31—1 ,287

Procedure Division Lines 8,139 163 13422

Total Predicates 1,225 25 0—115

Linear Predicates 1,070 21 0—104

Nonlinear Predicates 1 0.02 0—1

Input—Independent Predicates 154 3 0—28

Predicates with 1 Variable 945 19 0~97

Predicates with 2 Variables 125 2.5 0—20

Equality Predicates 779 15.5 0—76

TABLE I Predicate Statistics for 50 COBOL Programs

_ _ _ _ _ _ _ _  -—-5- - -—-5— ~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4



-5

12

Th. most important result is that only one predicate out of the 1225

tabulated In the stud y can possibly be a nonlinear predicate. The predicates

are also very simple since most of them refer to only one input variable , and

no predicate in this sample uses more than two inpu t variables.

In conclusion , while this  s tudy by no means represents an exhaustive

survey, we believe the sample is large enough to indicate that nonlinear

• predicate interpretations are rarely encountered in data processing applications .

It is clear tha t any testing strategy restricted to linear predicates is still

viable in many areas of programing practice.

. . Lfl~)LL t. SpaA t~ S trL ’eU~~t

A program which has N input variables and produces M output variables

computes a function which maps points in the N—d imensional inpu t space to

points in the M-d iaensiona l output space. The input space is partitioned into

a set of domains . Each domain corresponds to a part icular  executable path in

the program and consists of the input data po ints which cause the path to be

executed . More formally, an input ~~~~~ domain is define d as a set of input

dat.i points satisfying a path condition , consisting of a conjunction of predi-

cates along the path. In this discussion , these predicates are assumed to be

simple; compound predicates will be discussed later in Section 5.3.

We as sume that the input space is bounded in each direction by the

minimum and maximum values for the corresponding variable. These mm —ma x

constraints do not appear in the program but are automatically appended to

each path condition . Since a sing le data type is used for all variables in

our language , each variable will have th . same mm -max constraints.

The boundary of each domain I. determined by the predicat.s in the path

condition and consists of border s~tments, where each segment is the section of

the boundary determined by a single simple predicate in the path condition.

Each border segment can be open or closed depending on the relation a l operator

—- - -

~

- - .--

~

•—  -5- ~-~~- --~ -— -—------5-- - —



- --5 — - - - 5— — - - -5 -~---- -- -5-• - -- ---—-- 

13

in th. predicate. A closed border ss~~ent is actually part of the domain and

is formed by predicates with <~ 
> , or • operators. An ~~en border segment forms

part of the domain boundary but does not constitute part of the domain, and

is formed by ‘, > , and ~I predicates . We shall f ind it convenient to use the

term border operator to refer to the relationa l operator for the corresponding

predicate.

Since border segments in the input space are determined by the particular

predicate interpretations on the path , the form of the segment may be differen t

from that of the or iginal predicate . For example , with input variables A and 8,

the linear predicate A < C  + 2 can lead to a nonlinear border segment , A < 8*B + 2,

when C • 3*3~ Similarly , a nonlinear predicate , C > A*A + 3, will produce

a linear border segment , A > B , when C • A*A + A. Since a predicate can appear

on many paths and each path can execute a different sequence of assignment

statements for the variables used in the predicate , a single predicate can have

many different thterpreta t ions and can form many discontinuou.s border segments

for various domains .

The total number of predicates on the path is only an upper bound on

the number of border segments in the domain boundary since certain predicates

in the path condition may not actually produce border segments. An inp~ t-

independent pr edicate interpretation is one which reduces to a relation between

cons tants , and since it is either true or false regardless of the input value s ,

it does not further cons train the doma in . A redundant predicate interpre ta t ion

is one which is superceded by the other predicate interpretations , i . e . ,  the

domain can be define d bya strict subset of the predicate interpretations for

that path.

The general form of a simple linear predicate inte r pretation is

A L + A  X + ..~~.+ A  X ROP ~i i  2 2  n n



—• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

14

whe r e ROP is the relationa l operator , X~ are input va r iables , and

A~ . K are constants. However, the border segment which any of

these predicates defines is a section of the surface defined by the equality

A X  + A  X + ....+A X — K ,1 1  2 2
since this is the limiting condition for the points satisf y ing the predicate.

In an N-dimensional space this linear equality define s a hyperplane which is

the N—dimens ional generalization of a p lane .

Consider a path condition composed of a conjunction of simple predicates.

These pr.dicstes can be of three basic types: equalities (.), Inequalities (,

‘, ~~, > ) ,  and nonequalities (#). The use of each of the three types results in a

mark edly  differ ent effect on the domain boundary . Each eouality constrains the domain

to lie in a part icular  hyperp lane , th us reducing the dimensiona lity of the

domain by one . The set o f inequality constraints then defines a region within

the lower d imensiona l space defined by the equality predicate s .

The non.quality linear constraints define hyperp lanes which are not part

of the dosath, giving rise to open border segments as mentioned earlier . Observe

that the constraint A # B is equivalent to the compound predicate (A <3) OR

(A -B ). In this form it is clear that the addition of a nonequality predicate

to a set of inequalities can split the domain defined by those inequalities into

two reg ions .

The following example should clarify the concepts discussed above ,

READ I ,J;
C . I + 2 J - l ;

(Fl) I V C >  6
THIN D — C - I;
ELSE D • C + I - 3 + 2;

DID! F;

(P2) I F D — C + 2
THEN E • I;
ELSE £ — 3;

DIDIF;

(P3) If E D  - 2~.JTHEN F • I;
ELSE F •

END IF;

WRITE F;

_ _ _ _ _  _ _  ~~~-— -~~~~~~~~~~~~~~~~ -5- - -



F- 
- -  ________ - - — — --•---— ••- —- _~~~~~~~---- 

__•~• • - 5 - 5•-5-5-5-5 -5 -

15

Figure 1 shows th . corres pondi ng input space partitioni ng structure for

this program. The input space is in terms of inputs I and 3, and is arbitrarily

constrained by the following mm —max conditions ;

— 3 < L (4 , — 2 < 3 < 6 .

Each border in Figure 1 is labelled with the corresponding predicate, and each

domain is labelled with the corresp onding path. Tb. path notation is based

upon which br anch (T or E) is taken in each of the three IF constructs , e . g . ,  TEE.

The first predicat e P1, C 6, will be interpreted as I + 2*J 7 since

C • I + 2~J - 1. This sing le interpretation Fl is seen in Figure 1 as a single

continuous border segment across the entire input space. The second predicate

P2 demonstrates the effects  of both equality and nonequality predicates. Domains

for paths through the THEN branch are constrained by the equality, and this

reduction in dimensionality Is seen in the fac t that these domains consist of

th. points on the solid line segments ~rr and ITT. Paths through the ELSE

branch are constrained by a nonequality pred icate , and the corresponding domains

consist of the two regions on either side of the solid line segments (e.g., EEE).

This predicate has two interpretations depending upon the value assigned to D

and produces two discontinuous border segments En and T m .

The third predicate P3 might have four different interpretations , but

only one border segment app ear s in the diagram . The other three inte rpretations

do not produce borders since they are either redundant , input-independent , or

correspond to infeasible paths . With three IF constructs we have eight control

paths, but the diagram contains only five domains sinc e three of the paths are

infusible. Also many of these domains have fewer than three border segments

because of redundant and input-independent interpretat ions. From this example we

can conclude that the input space partitioni ng structure of a program with many

predicates and a larger d imensional input space can be extr ely cospliested .

-- _ _ _ _ _



-_- ---5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~—~~~ ~~~~~~~~~ -~- - —-~~~--5~~~~ -— -- -5~~-~~~~~~--

16

6 I

TEE 
~— T T T  

-

4 -  TEE -

3 —  —

EET

J 2 -  LEE

ETT

0 -  -

P2 P3

EEE EET -

2
3 -2 - ‘  0 I 2 3 4

I

FIGURE 1. Input Space Partitioning Structure

-u 
_ _ _  . - — - - - - — —



_______ --  
_ 

- 
______________________________ - _

17

The foregoing defini t ions and the example allow us to characterize more

precisely domains wh±ch correspond to simple linear predicate interpretations .

For a formal statement of the characterization, we need the following definitions.

A set is convex, if for any two points in the set , the line segment joining

these points is also in the set. A convex polyhedron is thi set produced by the

intersection of the set of points satisfying a finite number of linear equalities and
inequalities.

Proposition 1

For an execution path with a set of simple linear equality or inequality

predicate interpretations, the input space domain is a single convex polyhedron.

If one or more simple linear nonequality predicate interpretations are added to

this set , then the input space domain consists of the union of a set of disjoint

convex polyhedra .

1
- -



_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

18
CHAPTER 3

ERROR CLASSIFICATI ON AND THEORETICAL LIM ITATIONS

3.1 Deftnjttons of T~~es of Error

The basic ideas behind the classification of errors that we use are due to —

Howden (9], but our approach to defining them Is somewhat more operational

than tha t given in his paper.

From the previous sections, It is clear that a program can be viewed as

1) ~jst&biishing an exhaustiv e partition of the input space

into mutua l ly exclusive domains each of which corresponds

- to an executable path , and
-

2) specifying , for each domain, a set of assignment statements

which constitute the domain computation.

Thus we have a canonical represent ation of a program , which is a (possibly

infinite) set of pairs ((D1;f1
),(D2 ;f ,), ... (D1;f~) , . . } , where D

1 is the i—tb

domain , and f 1 is the corresponding domain computation function .

Given an incorrect program P. let us consider the changes in its

canonical representation as a result of modifications performed on P. It is

assumed that these modifications are made using only permissible language

constructs and results in a legal program .

Def initiot~: A domain boundary modification occurs if the modification

results in a change in the D1 component of some (Di
;f j) pair in the canonical

representation .

Definition : A domain computation modification occurs if the modifIcation

results in a change in the f~ component of some (D1
;f i) pair in the canonical

representation .

L.~
_ . —-— - - - -- --- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - - _-~—_~ .4

—-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 

l9~~~~~~~~~~~

Definition : A missing p~~~ç~~~ 
modification occurs if the modification results in

the creation of a new (D~ ;f
1
) pai r such that D

1 
is a subset of D

1 
occurring in some

pair (D
1
;t~) in the canonical representation of P, and f~ diff ers from f 1.

Notice that a particular modification (say a change of some assignment

statement) can be a modification of more than one type . In particular , a

missIng path modification is also a domain boundary modification.

The errors that occur in a program can be classified on the basis of the

modifications needed to obtain a correct program and consequent changes in the

canonical representation . In general, there will be many correct programs, and

~ altiple ways to get a particular correct program . Hence, the error classif i-

cation is not unique, but relative to the particular correct program that

would result from the series of modifications.

Definition: \n incorrec t pro~ rJ1m P can be viewed as having a domain error

(computational error) (missing p~ çji error) if a correct program P can be

created by a sequence of modifications at least one of which is a domain

boundary modification (domain computation modification) (missing path

modification).

Several remark.s are in order .  The ~perat tona l consequence of the phrase

“can be viewed as” in the above definition is that the error classification

is relatlve not only to a particular correct program , but also to a particular

sequence of modifications . For instance , consider an error in a predicate

interpretation such that an incorrect relational oper.~tor is employed , e .g . , use

of > instead of < . This could be viewed as a domain error , leading to a

modification of the predicate , or as a computation error , leading to a modification

of the functions computed on the two branches. The fact that it might be

more profitable to change the relationa l operator rather than the function

computations is a consequence of the language constructs , and is not directly

--.-

~

— --—-- - - -5 -5--  - - -— — -5-- - -~~~~- - -5- ---5--- - ---5 - -



-5

20

captured in the definitions of the types of error. In this paper we would

regard an error due to an incorrect relational operator as a domain error;

it is a simpler modifIcation to change the relational operator in the predicate

than to interchange the set of assignment statements.

Mor . specific characterizations of these errors can be made in the context

of tt~e specific prograaming language which we have introduced . In particular ,

the following informa l description directly relates the domain and missing

path errors to the predicate constructs allowed in the language .

A path contains a domain error if an error in some predicate interpre-

tation causes a border segment to be “shifted” from it~ correct position or

to have en incorrect border operator . A d omain error can be caused by an

incorrectly specified predicate or by an incorrect assignment statement which

affects a variable used in the predicate. An incorrect predicate or

assignment statement may affect many predicate interpretations and conse-

quently cause more than one border to be in error.

A path contains a missing path error when a predicate is missing which

would subdivide the domain and create a new execution path for one of the

subdomains. This type of error occurs when some special condition requiring

different processing is omitted .

3.2 Fundamenta l Limitation.a

Finite t..ting strategies are fundamentally limited by their inability

to detect phenomena occuring in region s which have zero volume or measure

r~ latlve t o th~’ Input sp5cd or domatn. The first of these limitations we shall

define as coinc idental correctness. In testing each domain for the

correctness of i ts  boundaries , if the output for a test case is correc t , it

L

i 

- -   
- -4



21

could be either that the test point was in the correct domain , or that it was

in a wrong domain but the computation in that domain coincidentally yielded

a correct value for the test point . Similarly , a domain computation could

correspond to an incorrect function , but its output may coincide with the

correct value for a particular test point . To be absolutely certain that the values

are not coincidentally correct , i t would be necessary to exhau stively test a l l

the points of the domain.

The essence of the coincidental correctness problem is the sane as

that of the problem of deciding if two arbitrary computations are

equivalent ; the latter problem is kn own to be generally undecidable . However ,

in practice , the severity of the problem is related to the probability that

for an arbitrary point this coincidence would occur . If the set of points

for which the two functions have the same value is of measure zero , then this

probability is zero , even though coincidental correctness is still possible.

So, even with coincidental correctness as a possibility, a testing strategy

can be almost reliable in the sense of Howden [9], if it would be reliable

in the absence of coincidental correctness , and the set of points which are

coincidentally correct has zero volume relative to the domain being tested .

Another basic limitation relates to missing path errors. When the

subdomain associated with a missing path is a region of lower dimensionality

than the original domain , a missing p~~]~ 
error of reduced dimensionality

occurs. This typically happens when the missing predicate is an equality. If

a l l  that is ava i lable is just the (incorre-t) program to be tested , then the

probabi l i ty  that  a finite set of test points would detect the missing predicate

is zero , since the volume of the •ubdomain is zero relative to tha t of the

original domain .

—- -5—-- -~~~~~~ .~~~~~------ —~~~~~~ — -5-5-.- - - --5.- - - - - 5 - .- -  - -- -



p 

--

~~~~~~

-- --- , -.-. -.- .

~~~~~~~~~

-—---- -

~~~~ 

22

-
The prepos.d approach is capable of detecting many kind, of nissing path

errors, but for some of them the number of required test points is inordinate.

Hence , in the next section , where we descrIbe the testing strategy , we will

simply assume that no missing path errors are associated wIth the path being

tested .

-m
_ _ _ _ _ _ _ _ -5 .— ~~~~~~—.~~~--- - -,~~~~~~~~~~ - . .~~~~~ —. --5- ~~~

— -5- ----- -

CHAPTER 4 23

THE DOMAIN TESTIN~
’
~ STRATEGY

The domain testing strategy is designed to detect domain errors and will

be effective in detecting errors in any type of domain border under certain

conditions. Test points are generated for each border segment which , if

processed co r rec t ly , determine tha t both the relational operator and the

posi t ion of the border are co r r ect . An error in the border operator

occurs when ~n incorrect relational operator is used in the corresponding

p redicate , and an error in the position of the border occurs when one or more

incorrect coefficients are computed for the particular predicate interpretation .

The strategy is based on a geometrical analysis of the domain boundary and

takes advantage of the fact tha t po1nt~ on or near the border are most

sens i tive to domain errors. .\ ~-iu~ Lcr of author3 havc nade this observation ,

e . g . , ~~ver •t ~~: . r : ’ and c :.~r~~ ~~~~~
‘
.

As stated in Proposition 1, a domain defined by simple linear predicates

is a convex poly hedron , and each point can be classified according to its

position within the domain. An interior p~ int is defined as one which is

surrounded by an t—ne ighborhood c o n t a i n i n g only po in t s in the domain.

Similarly, a boundary point is one for which every t-neighborhoo d contains

both points in the domain and points lying outside of the domain. Finally,

an •xtreme j~~ nt is a boundary point which does not lie between any tw,

dist toc t points In th~ domain.

In the previous section , a comparison was made between the given program .ind .‘
corresponding correct program; indeed domain errors were defined in terms

of this correspondence. It should be emphasized that the domain strategy

does not require that the correct program be given for the selection of test

-5

—

~~~~
--

~~~~~



~~~~~~
. 

~~~~~~~~~~~~~~~~~~~~~~~ 
.—-,-,—,-—-.-——— -

~~~~~~~~~
.

24

points , since only Information obtained from the given program is needed .

However , it will be convenient to be able to refer to a “correct border ”,

although it will not be necessary to have any knowledge about this border.

Define the given border as that corresponding to the predicate interpretation 
—

for the given program being tested , and the correct border as that border

which vould be calculated in sonc correct progran .

The donain t es t ing  s t ra tegy is f i r s t  developed , explained , and validated

in detail under a set of simplifying assumptions:

1) Coincidental correctness does not occur for any test case . If

co rrect  ou tpu t  resul ts  are produced , we can assume that the test

point is in the correc t domal:; rather than being coincidentally

correct in another domain.

2) A missing path error is not associated with the path being tested .

Missing pa th  er ro r s  of reduced d in ens iona l i t v  pose a theoret ical

l imitation to the reli abi li t-: of any program testing methodology .

3) Each border is pr~ du~.-ed by a simple predicate.

4 )  The pa th  cor r e sr ~ n-~ir ~ t o  each id’ acent ~~n.iin computes a d i f fe r e n t

function than t he  ,‘.~t h  be ing  ~~~~~~~~~~~~

5) The given border is l~~nq ar . snd t~ it  1. ~r’c~’rrect , th e correc t

b’rder is ,415’ linear.

6) The input space is c - ’nttm j ’~~ r.e .r t !~tan discrete.

7) Each bo r der is produced by s— in equali ty pr ed icate.

8) The input space is twn—dtmen.t’nal . c~~rresponding to a program which

reads at most two tnr’~ . t variables.

The first tw~ sas~umptfons were t’~orr”1g’~iv explored fn the previous .ect~on.

-5— - 5 - - - .. - -



_ _ _ _ _ _  
________ _____ 

-~~ -- --- - 5 .

25
Assumptions 3) through 8) are for convenience in the initial exposition , and

we shall investigate lat .r th. conditions under which each can be relaxed . Also ,

references ( 3 1  and 141 discus. both the domain strategy and these assumptions

in greater detail.

.... The Two-Dimensional Linear Case

Given assumptions 1) — 8 ),  a set of test points is first defined for

detecting border shifts , and then we shall show that this set of points also

detects all possible relationa l operator errors. Since the present analysis

is limited to linear borders in a two—dimensional input space, each border is

a line segment. Therefore , the correct border can be determined if we know

two points on that botder .

The test case. selected will be of two t ypes , defined by their position

with respect to the given border . An ON test point lies on the given border ,

while an OFF test point is a small distaz~~e c from , and lie. on the open

L. side of , the given border . Therefore , we observe that when testin g a closed

border , the ON test points are in the domain being tested , and each OFF test

point is in some adjacent domain . Conversely, when testing an open border,

r each ON teat point is in some adjacent domain, while the OFF test points are

in the domain being tested .

Figure 2 shows the selection of three test points A , 3, and C for a

closed inequality border segment. In this and subsequent figures the small

arrows are used to indicate the domain which contains the border segment . The

thr ee points must be selected in an ON—OFT—ON sequence. Specifically, if

test point C is projected down on line Al, then the projected point must

lie stric tly between A and 3 on this line segment . Also point C is selected

a distance c from the given border segment , and will be chosen so that it

satisfies all the inequalities defining domain D except for the inequality

being tested .

E 

. . , . . . . —.~~- - -~-----—- --—---.-___ - ‘



ii:: IIII
~~

ON OFF ON

Domain D - -

Given Border
Correct Border 

FIGURE 2 Test Points for  a Two-Dimensional Linear 3order -

t

C



_ _ _  _ _ _  - -5

27

It ~~st be shown that test points selected in this way will reliably

detec t domain errors due to boundary shi f t s .  If any of the test points lead

to an incorrect output , then clearly there is an error. On the other hand ,

if the outputs of all these points are correct , then eithe r the given border

is correct or we have gained considerable information as to the location of a

correct be rder. Figure 2 shows that the correct border mast lie on or above

points A and B, and ~ .ist lie bu oy point C , for by assumptions (1) and (4),

each of these test points must lie in its assumed domain. So if the given

border is incorrec t , the correct border can only belong to a class of line

segments which interoect both closed line segments AC and 1~C.

Figure 2 indicates a specific correct border from this class which

intersects line segments AC and BC at P and Q respec tively. Define the

domain error ~~gnitude for this correct border to be the maximum of the distances

from P and f rom Q to the given border. Then it is clear that the chosen

test points have detected domain errors due to border sh i f t s  except for  a

class of domain errors of magnitude less than c. In a continuous space c

can be chosen arbitrarily small , and as c approaches zero , the line segments

AC and BC become arbitrarily close to the given border , and in the limit , we

can conclude that the given border is identical to the correct border. However ,

the continuity of the space also implies that regardless of how small £ is

chosen , border shifts of magnitude less than may not be detected , and there-

fore we must correspond ingly qualify our results.

Figure 3 shows the three general t ypes of border shifts , and will

allow us to see how the ON—OFT—ON sequence of test points works in each

case. In Figure 3(a), the border shift has effectively reduced domain D1.
Test points A and B yield correct outputs , for they remain in the correct

domain D
1 despite the shifted border . However , the border has shifted past

‘- - -5—  -5 — . - -5— - - — - -5  ,-



_ _ _ _ _ _ _ _ _  - -5- .  _ _ _ _ _ _

28

D2

~~C ~~B

D,

L D2 (b)

!
~~7>~

x C

(c) 
- 

-

Given Border
Correct Border — ————

FIGURE 3 The Three Types of Border Shifts



. . T.. ~~~~

‘ —- 5

29

test point C , causing it to be in domain D
2 instead of domain D1. Since

the program will nov follow the wrong path when executing input C,

incorrec t results will be produced . In Figure 3(b), the domain D1 has

been enlarged due to the border shift. Here test point C will be processed

corr.ctly since it is still in domain D2, but both A and B will detec t the

shif t since they should also be in domain D2. Finally in Figure 3(c),

only test point B will be incorrect since the border shift cause s it to be

in D1 instead of D
2. Therefore, the ON—OFT—ON sequence is effective since

at least one of the three points must be in the wrong domain as long as the

border shif t is of a magnitude greater than c.

Recall in Figure 2 that we required the OFF point C to satisfy all

the inequalities defining domain D except for the inequality being tested .

The reason for this r.quirement is tha t some correct border segment may

terminate on the extension of an adjacent border , rather than intersecting

both line segements AC and BC as we have argued . Since we have assumed a

continuous space , C could always be chosen closer to the given border in

order to satisfy the adjacent border insqueliti.s. An analye~s of this situa-

tion will be presented in Suction 6.2.

We must also demonstrate the reliability of the method for domain errors

in which the predicate operator is incorrect. If the direction of the

inequality is wrong, e . g . ,  is used instead of >, the domains on either side

of the border are interchan.g.d , and any point in either domain will detect

the error . A more subtle error occurs when Just th. border itself is in

the wrong domain, e.g. , < is used instead of < . In this case the only points

affec ted lie on the border , and since we always test ON points , this type of

error will always be de tected . If th . correct predicate is an equality, the

OF? point will detect the error .

‘--- -5 _ _ _ _ _ _ _ _ _ _ _  _ _ _ _



- ‘  
.-.- 

.

~~~~ 30

The domain testing strategy requires at moat 3*P test points for a

domain, where P the number of border segments on this boundary, is bounded

by the number of predicates encountered on the path. However , we can

reduce this cost by sharing test points between adjacent borders of the

domain. The requirement for sharing an ON point is that it is an extreme

point for two adjacent borders which are both closed or both open. In the

example in Figure 4 , the points that can be shared are A1, A2, and A3~ The

number of ON points needed to test the entire domain boundary can be reduced

by as much as one half , i.e., the number of test points , IP, required to

test the complete domain boundary lies in the following range :

Tp .. 3*p .

-j
Even more significant savings are possible by sharing the test points

for a couuon border between two adjacent domains. If both domains are

tested independently, the coemon border between them is tested twice, using

a total of six test points. If this border has shifted , both domains must

be affected , and the error will be detected by testing either domain. —

Therefore, the second set of test points can safely be omitted . However,
—

the coat savings in such sharing should be balanced against the additiona l

processing required .

We now formally sumnarize the results of this section in the following

proposition .

Proposition 2

Given assumptions (1) through (8), with the OFF test point chosen a

distance . from the corresponding border , the domain testing strategy is

guaranteed to detect all domain errors of magnitude greater than c. More—

over , the coat is no more than 3*~ test points per domain , where P is the

number of predicates along the corresponding path.

_ _

- -

I.

31

x

x

43

FIGURE 4 Domain Test Points for Closed and Open Borders

t

- -5 - - -— - —-- -- ----— - ---- - -

32

N-Dimensional Linear Inequa l it i es

The domain testing strategy developed for the two—dimensional case can

be extended to the general N—dimensiona l case in a straightforward manner.

The central property used in the previous analysis was the fact that a

line is uniquely determined by two p o i n t s . We can easi ly generalize this —

property since an N—d imensiona l hyperplane is determined by N linearly

independent points. So, whereas in the two—dimensional case we had to

identify only two points on the correct border , in general vs have to identify

N points on the correct border , and in addition , these points must be guaranteed

to be linearly independent.

The validation of domain testing for the general linear case is based on

the same geometric arguments used in the two—dimensional case. The key to the

methodology is that the correct border must intersect every OFF-ON l ine segment ,

assuming that the test points are all correct. Since we must identif y a total

of N points on the correct border , we need N OFF-ON line segments , and we can

achiev e this by tasting N linearly independent ON test points on the given

border and a single OFF test point whose projection on the given border is a

convex combination of these N points. In addition , as in the two—d imensional

case the OFF point must also satisfy the inequality constraints corresponding

to all adjacent borders.

Even though we do not kn ow these specif ic points at which the correct border
—

intersects the ON-OFT segments , we do know that these points must be linearly

independent since the ON points ar e linearly independent . The OFF point is

a distance c from the given border , and in the limit as c approache s zero ,

each OFF—ON line segment becomes arbitrarily close to the given border.

However , as in the two-dimensional case , the -limitation means that only

border shifts of ma gnitude greater than . will be detected .

-—- - -5-- — — -- -

_ _ _ _ _ _ _ _ _ -~~~~~

33

The domain testing strategy requires at most (N+1)*P test points per

domain, where N is the dimensionality of the input space in which the domain

is def ined and P is the number of border segments in the boundary of the

specific domain. However , we again can reduce this testing cost by using

extrem e points as ON teat points. Each extreme point is formed by the

intersection of at least N border segments , and therefore one point can be

used to test up to N borders. In addition , extreme points are also linearly

independent . Each border must be tested by N ON points , and any points

beyond this are redundant , and so not all extreme points on each border are

required . As a result of this kind of sharing, the number of test points can

be as few as 2~P. As in the two—dimensional case, there can be further

savings if test points are shared between adjacent domains. Finally, since

some of the P border segments may be produced by the mm —max constraints which

define the bounds of the input space , the number of test points can be

reduced still further , if we can assume that these constraints are prede-

termined and need not be tested .

This generalization to N dimensions is significant since very few

1’ nontrivial programs have only two input variables. We suemarize the results

so far in the following proposition :

Proposition 3

Given assumptions (1) — (7) , with the OFF test point chosen a distance c

from the corresponding border , the domain tes t ing s t ra tegy is guaranteed to

detect all domain errors of magnitude greater than regardless of the dimen—

atonality of the input space. Moreover, the cost is not more than (N+l)*P

test points per domain.

-

34

. 4 . 3 Equality and Nonequality Predicates

Equality predicates constrain the domain to lie in a lower dimensional

space. If we have an N-dimensional input space and the domain is constrained

by L independent equalities , the remaining inequality and nonequality

predicates then define the domain within the (N—L)—dimensional subspace

defined by the set of equality predicates.

In Figure Swe see the equality border and the proposed set of test points.

In a general N—d imensional domain, let us first consider a total of N ON

points on the border and two OFF points , one on either side of the border.

As before , the ON points must be independent, and the projection of each OFF

point on the border must be a convex combination of the ON points.

Given an incorrect equality nredicate , the error could be either in ‘the

relat ional operator or in the position of the border or’ both. The proposed

set of test points can be shown to detect an operator error or a position

error by arguments analogous to those previously given . This set of points

is alio adequate for almost all combinations of operator and position errors ,

except for the following pathological possibility. Let us assume that the

border has sh i f ted and the correct predicate is a nonequality. If both OFT

points happen to lie on the correct border while none of the ON points

belong to this border , the error would go undetected . This singular

situation is diagrameed as the dashed border in Figure 6, where A1
and A2 are

the ON points , and C1 and C2 are the OFF points. This problem can be solved

by testing one additional point selected so that it lies both on the given

border and the correct border for this case , i.e., at the intersection point

of the given border with the l ine segment connecting the two OFT points.

This additional point is denoted by B in the figure .

Each equality predicate can thus be completely tested using a total of

(14+3) test points. By sharing t est points between all the equality predicates,

•
-5 - ‘ • —~~-—-~-—..~----~~ --------- - - — :‘~~~~~~

-—==
~
-- - --— - —-.--—

~~~~~--~ -5— —~~~-— -  _ — ..

~~~~~~~~~~~~ 

35

FIGURE 5 Test Points for an Equal i ty Border

L
S.

S.rI.

8:

Given Border
Correc t Border — — — ——

FIGURE 6 A Pathological Case in Domain Testing for an Equality Predicate - —

- - - - - --- ~_- ---~~~~~~- - ~~~~~~~~~

- ~~~

this number can be considerably reduced , but the reduction depend s upon

values of N and L. In addition , since testing the equality predicates

reduces the effective dimensionality to (N—L) for each of the inequality and

nonequality borders , and the equality ON test points can be shared , even

further reductions are possible.

ror the case of a nonequality border , the testing strategy ~s identical

to that of the equality border just discussed . The arguments for the

validity of the strategy are analogous to those in previous cases. Again in this

case , the pathological possibil~.ty discussed in connection wi th the

equality pre~. catecan occur , and can be handled in the same way. The major

difference is that while test points can be extensively shared between

equal i ty and in t q u a l i t y borders , in gene ral such sharing is not possible

between none~ua1ity and inequality borders. The following proposition

su~~arizes the situation for testing linear borders in N—d imensions .

Proposition 4

Given assumptions (1) through (6), with each OFF point chosen a distance

c from the corresponding border , the domain testing strategy is guaranteed to

detect all domain errors of magnitude greater than c using no more than

P (N+3) test points per domain.

4 ..~ An F.xample of Error Detection UsinA the Domain Strategy

The domain testing strategy has been described and validated using some-

what complicated algebraic and geometric arguments. In this section we hope to

complement those discussions by demonstrating how a set of domain test points

for a short sample program actually detects specific examples of differen t

types of progra ing errors. In discussing each error we will focus on a

specific domain affected by the error , and a careful analysis of its effect on

the domain will allow us to identif y those domain test points which detect the

error.

_ _ _ _ • •~~~ .

37

The short example program reads two values , I and J , and produces a single

outpu t value M. Therefore, the input space is two—dimensional, and the following

mm — m ax constraints have been chosen so that the input space diagram would

not be too large or comp licated .

—8 < 1 < 8 -5 < j c 5 .

I n add i t i on , since this is a two-dimensional space , we will, also test extreme

points for the border segments produced by the min—m.ax constraints in order to

be able to detect as many missing path errors as possible .

Even though the input space is assumed to be continuous , the coordinates

of each test point are specified to an accuracy of 0.2 in order to simplify the

diagrams and discussions. Of cou r se , in an actua l implementation each OFF

point would be chosen much closer to the border.

The sample program is listed below , and it cons is t s of three simple

IF constructs , the first two of which are inequalities and the last of which

is an equality. The input space structure is diagramed in Figure 7, where the

solid diagonal border across the entire space is produced by the first predicate ,

the dashed horizontal border and short vertical border at 1—0 are produced by the

second predicate, and the vertical equality border at 1—5 corresponds to the

third predicate. In addition , domain test points have been indicated for the

two doma ins which we w LI I. d iacuu , viz . , TTE a~id En.

Statmeent
Niaber

READ I,J;

1 I F I C J + l
2 T H E N K - I + J - l ;
3 ELSE K — 2 1 + 1;

ENDIF ;

4 T F K ~~~I + 1
5 ThEN L I + 1;
6 E L S E L — T - 1;

END IF;

7 IF I — S
8 THENM- 25L + K;
9 ELSE M • L + 25K - 1;

END IF;

WR ITE M;

_ _ rn, --~~~~~~~ -~~~~~~~~~~~~ ‘ - 5 ~~
--

38

I I I
w F-

I— I-F- w w -~~0

x
_ _ _— —>(

- I’ -
~~~~~~

F-
F- w• I—. c’Jw -

U ‘%~ I-
U

II



• - •• ~~~~~~~~~~~~~~~~~ ~~~~~~~~
—

39

Table II illustrates t~~ types of errors we would like to consider.

The first is an error in the inequality predicate in statement #4 of the

above program , (K > 1+1), where it is assumed that the correct predicate should

be (K ‘ 1+2) . This correspond s to an inequality border shift , and the modif ied

domain structure is shown in Figur e 8 . Three points have been selected to

test this border , and it can be seen in Table II that the two ON points detect

this error , where N and N ’ represent the output variables for  the given program

and for the assumed correct program respectively . Not. that as a result of

this error , the vertical border at 1.0 in Figure 7 has also shifted to 1.1 in

Figure 8, and if tested , would also reveal this error.

Table II also shows the effect of an error in an equality predicate in

sta tement #7 of the given program. It is assumed that the correct predicate

should be (1.5—i) rather than the (1—5) pred icate which occurs in the given

program. Figure 9 shows the modified input space structure , and it can be seen

that equality borders TTT and ETT have shifted . Table II shows the five points

which test the E~~ border , and note tha t two ON points both detect this shift.

Tab le III indicates tnat the domain strategy can also detect a compu-

tation error and a missing pith error , even though we have p reviously noted

that reliability canno t be proven for these cases . The computation error

arises from stat~~ent #6 in the given program, where it is assumed that the

correc t assigtaent statement for this ELSE clause is (L.t—2) instead of (L—J—l)

which actually appear . in the given program . Since L is not used in any sub-

sequent predicate , this corrsspo nd s to a computation error rather than a domain

error. Thus the input space structure in Figure 7 is applicable for both

the given end the correct programs. Table III shows the •ix test points which

have been chosen to test domain TEE w h i u h  is affected by thi, computation error.

Fou r of the point , should indicate the error , but note the test results at

(-4, —3) are coincidentally correct; the remaining three points detect the error .



_ _ _ _ _ _ _ _ _ _ _ _  — 

4C

I I I I
F- w
F- F-7 w

—
X

-r
~~~~~~~~~~~~~ 

-
~~~~~

.

F - i \
F- F-

W
I - c’J
I
I j_ _.t —I
I

N - o , -~~~i .
I W
I ‘4 ui

W I W
- F -  ‘4 - c ’ J

F- 1 
I

I x
I j
I W -~~~~~

.

W I

F-
I

-

~~~~~~ J
I
I

I I I
c’J 0 CJ

4 1

1 -I 1 1

W

F-
F-

i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~K ~~:
< I N

N
F- ‘~c~

h j ’
~~ u”” 0

F - I
F-

I ‘4. W
I

W

\
~~~W~~~~

I

W I
F-— 

I ~~~
.

F- I W I

w
F-

I -~ o
I 

I

I

I I 1
C’J 0 (‘.4 I

I I

L.  _ 
_ _  

_ _ _ _ _ _ _ _



42
— I • r% ‘0 ~~— .4 c~4 (.4 

~•4 (.4 (.4

C
• •

~~

00 .0
(.4 • — ‘Co . — e.4 (.4 (.4 (.4 (.4a s e x i  I I

‘-4

• ~, -... —.
C • 0 0
14 l.a 44 (‘1 — ~~~ . . . ~~.0 0  • — ( . 4  I 4~~ (.4 0

— • . .

~~~~~~~~~~~~ ~~ U
U, W ~d • — — ‘p4 .4 .4

~ . ~~ —~~~ e.00 ~~. U.C ~. C e
~~

4 * 0 0 ~.4 ~~~~bi •C C U 5 . C 1.4— -t — U, I’- ~3 U,
U ~~ •~~

.
~~ ~~~

.
~~ ~~

. C
.0
C

a
-4

a”. 40

E

_________ - -.~~~~~~~~
---—-- •- — • •

~~
•

43

.4
• .0 (.4

- 0’ r~ 0 — (.4 — . . — (.4
X r’s (.1 — .0 (.1 — — — (.4 ‘4’ .0 (.4 —I I I I I I I I I I

C
C

O -4
• .4

C I .4
. 4 0 0
00 .0 (.4 0 .0 (N
S. ~~ . . — (.4 l4~ . . — (.4

• XI ~~~ ~ 4 -C’ ‘0 (‘4 .-4 • (.‘I (.4 4 .0 (.4 —4 4 . 4 I I I I I .4 I I I I I

44
I-’ 0

l.a —
0

. 4 0
~—‘ (.4 C C .~~_ CO • 4 4 1 4 CO

44 .f~ ,1~ • (‘4 ~~. Ia .4’l •4~ • (.4 .~~C I I — I (‘4 C 0 I I — I (.4 —
— a a a • • (‘4 4 4 0 (‘4o CO .4 4

~~ — CO • 0 CO ‘C’ “~ — CO
S. I I I I I ~~ 2 I I I I I ~~••-. .~~ .-‘ .

~~~ 
.
~~~ ~-‘ .-. .-. ‘~~~ -a. Sa.

a ‘C

‘a

I

C ~~~~
I

44
Suppose in program statement #2 the THEN clause is replaced by the

following code .

THEN IF 2*J .c ...5*j —40 -
THEN K - 3;
E L S E K — I + J - l ;

ENDIF;

This corresponds to a missing path error and is indicated as such in Table I I I .

Figure 10 shows how the domain TEE i~ modified by this missing path error , but

note that only test point (—8,—5) detects this error . If the < inequality in

the missing predicate had been an equality, this would have produced a missing - ‘

path error of reduced dimensionality , corresponding to a domain consisting of

Just th. line segment in Figure 10, and would hav, gone undetected .

j

ii

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~-



_

45

I I I I I

I W

— -— . — -J -x
-~~~N -

~~~~~~

F- d’
F-
F- W

IX F-
P

- I N w
C. \

\
\

>\
\

“U 0

— — lul l, — — — ~~~ .lt_, — — 0 S—I

W

II

_ _ _ _ ~~ - --.--. - - ~~~~~.- ~~~~~~~~~~~~~~ _ - - ~~~~.—
-

~~~— - •• • . -
~~~~~~~ —~~~

—•

46

CHAPTER 5-

j

EXTENSIONS OF THE DOMAIN TESTING STRATEGY
Many assumptions were required in presenting the previous results , but

to some extent these assumptions were made to allow a simple exposition of the

domain testing strategy . This section will discuss assumptions (3), (4) , and (5)

which deal with compound predicates , adjacent domains which compute the same

function, and nonlinear borders , respect ively . The treatment of these cases will

certainly require additional test points, and in some instances will demand extra

processing which may render this testing approach impractical. However , one of

the main objectives of this section ii to illustrate that none of the assump t ions

(3) , (4) , or (5) pose a theoretical limitation to the domain testing strategy which

cannot be dealt with in some fashion.

5.1 The General Nonlinear Case

A f inite domain testing stra tegy cannot be e f fec t ive for the universal class

of nonlinear borders , but we must determine whether this is caused by some funda-

mental difference between linear and nonlinear functions. If the problem is that

we are considering too general a class of borders , then we should be able to extend

the methodology to cover well—defined subclasses of nonlinear functions . However ,

if the prOblem is caused by some basic characteristic of nonlinear borders , we

will not be able to extend domain testing to any class of nonlinear functions .

For linear borders , we hive assumed that if the given border to linear , and

• if there is a domain error , then the correct border is also linear . In order to

extend our tes t ing results to particular subclasses of nonlinear funct ions , such

____ -——_- ‘ - ‘
~~~~~ •— •- —-~~~~~~~~~ -~~~~~~~~~~~ -_ -  _ -~~~~~~~~~~~~

-
~~~~~~~~~

•-— -—
~~~~~~~~~~~~



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
“ ‘  -• 

-
~-~~• ~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~ —

47

as quadratic or cubic polynomials, we must assume that if the given nonlinear

border is in error , then th. correc t border is in the same nonlinear class . This

nonlinear class will be specif ied by K parameters; for example , consider the general

form of a two—dimensional quadrat ic in terms of variables X and Y , where A, B , C,...

are coeffic ients , and K — 6:

Then (K—i) points can be chosen in order to solve for these K coefficients. For

the evi ple above , the five points (X1, Yj]. i • i,..,,5, should Sat isf y the following
system of equations:

If IT I If i i A 0
•1 ii 1 .1 .

:2 ‘ 2 : : : •~~~ C
X~ Y~ X

1
Ti 

Xj Ti 1 j D 9
:~. 2  2 . • F 0

Def ine an independent set of (K—i) points [X ~ , If 1] as a set which can be used to

solve for the coefficients , and thus determine a specific member of the nonlinear

class .

We can now formu late the general nonlinear domain testing strategy in terms

of these observations . (K-i) ON-OFT pairs of points are chosen such tha t the

(K-l) ON points are independent and each OFF point is chosen a distance c from the

corresponding ON point. This requires 2*(K_1) test points per nonlinear border.

The (K— i) ON-OFT line segments formed by this set of pairs have been chosen so that

the only correct borders which yield correc t test results must intersect each of

these ON—OTT line segments. For any particular correct border , there are (K—i)

independent inter section points , which determines the border completely . Note that

the intersection points are independent if c is chosen sufficiently small, since

-I 
—•-•-- -~~~~~~~~~~~~~ - ‘--~~~~~ ~~~~~~ - -  •— -- - . - -



F-’

48

the ON points are independent for the given border. A further requirement, as in

the linear case , is that all OFF points satisfy all inequality borders other than

the one being tested.

While a single OFF point was suff icient  in the linear case , the independence

criterion requires (K-i) OFF points for each nonlinear border . In the former case 3

linearity allowed the OFF point to be shared by all the ON points, since the linear

independence of the points identif ied as lying on the true border is guaranteed

by the linear independet.ce of the ON points themselves . If we were to test a non-

linear border with (K—i) ON points and a single OFF point, we would be able to

conclud e that the correct and given borders Intersect at (K—i) point.. However ,

we cannot  conclude that these (K—i) points are independent. We know of no

selection criterion for the ON points which would guarantee the independence

of the intersection points using only one OFF point. So an effective strategy

requires the full set of 2*K test points , and unfortunately K grows very rapidly

as the d imensioneitty and degre e of nonlinearity of the border increases.

A two—dimensional nonlinear border is a very special case , and even though

the general strategy is effective , a slightly different testing strategy can be

formulated to reduce the number of required test points. The basic difference is

that the intersection between two —d imensional nonl inear  borders from the same

class is a finite set of points , the maximum number of which can be determined

from the form of the function . For example a pair of two-dimensional quadratic

curves can intersect in at mos t four points. This means that any set of more than

four points cannot possibly Lie on two distinct quadratics , and any five points

uniquely determines a specific quadratic . Therefore , we do not have to worry

about independence in the two—d imensional case , since any set of (K—i) dic~ inct

point . will produce a system of independent linear equations. For example ,

any three distinc t points can lie on at most one cl ic t i , , .*lnc e twIt c t f t t e u

cannot have more than two points in coimnon.

_____________ __________ ~~~~~~~~ — --~- -—~~~~~~~~ —-.~~~~~~~~~~~~~~ -



•~~- . h ~~. : • i ~~~

49

• We test a two—dimensional nonlinear border with K pointi, e . g . ,  ~ix for

a quadratic selec ted in an ON—OFF—ON—OFF.... sequence along the border as diagra .d

for the closed border in Figure ii. Sincs the correct border mus t pass on or

above the given border at each ON point, and must pass below each OFF point , the two

borders must intersect an odd number of times, let us assune once , in each ON—OFF and

OFF-ON interval along the border . Th. K test points define (K-i) intervals on

the border , each of which must contain at least one intersection point . We have

shown that these (K—i) points must be independent , and since they cannot lIe

on two dis t inct  borderc , th. given border must be correct within c. As a

technical detail , it is also possible that the correct border may be tangent to

the given border at en ON point , but if this occurs, an argument involving the

derivative s of the two borders at that point can be invoked to justify the choice

of the test points for this two—dimensional case.

Although the domain strategy has been extended to nonlinear boundaries,

points must be generated in a domain defined by nonlinear boundaries, requiring

the solution of nonlinear systems of equations . Since this probably requires

excessive processing for arbitrary nonlinear borders , it does not represent a

very practical approach.

Adjacent Domains WhIch Compute the Same Function

If two adjacent domains compute the same function , any test point selected

for their coemon border is ineffective , since the same output values are

computed for the test ooint regardless of the domain in which it lies. We

will demonstrate how domain testing can be modified to deal with this problem .

In Figure l2 (a) ,  assuming domain D1 were being tested , we must compare

the funct ions calculated in domains and D
2 for test point A , D1 and D4 for

3, and D1 and for C. One of the major problem. to be solved is the

identific ation of t)’ese ad jacent domains. We assume tha t when testing domain



- - . — -
~~~~~~

.—
~~~~~~~~~

-
~~~~~~~~~~~~~~~~~~~ — --- ~~

so

—~~~~~~ ~~

7 ,

4—’
—T

“I I
/ I I
/ I I

/

Given Border
Correct Border — — — ——

FIGUR E Li Testing a Two—Dimensional Nonlinear Border

_ _ _ _ _ _ _ _ _ _ _ -~~ •- —~~~~~~~~~~~~~~~~~~~~~~~~ •- - -~~~~~~~~~~~~~—-~~~~~~~~~ -~~ - -~~~~~~~~~~

F- ~~~
—

51

the partitioning structure of the adjacent domains and the program paths

associated with these domains is not known . It would be very complicated

to have to generate the domains which are adjacent to the border being tested .

Figure 12(b) illustrates an approach to this problem . The border being

tested is shifted parallel by a small distance ., so that test points A and B

now belong to adjacent domains , D, and D4, respectively. The modified program

is then retested using test points A and B, which will as a by—product identif y

the paths associated with these two adjacent domains. We can then compare

the output for each test point before and after the shift. If it is different ,

then we can definitely conclude that the adjacent domain computes a d i f f e r e n t

function , and this test point can safely be used . If the output is the same

for that test point , then we can c~ nc1uJt that either assunption (1)

r
~~~~ 

is violated . However , there is no war tc  decide this , .and the only

practical approach is to use further test points. If we know that coincidental

correctness cannot occu r , then we could  conclude on the basis of a sing~e point

that the adjacent domain c imputes the same function .

If two adjacent domains such as and D~ in F~~ure 12(a) are found to

compute the same function , then in order to carry out the domain testi ng strategy

on the given border , new test po ints may have to ‘e selected . For example ,

point A can no longer be used , and this requires ascertaining the border structure

between D
1 

and D ,. Thus a considerably amount of processing is required which

is probably not practical .

In s~~~ary, a technique of testi ng each point twice will assure us that

assumpt ion  (4)  is va l id , and this redundancy might be viewed as a reasonable price

to pay to eliminate t h i s  restriction . However , if an instance is found where the

as sumpt ion  Is not valid , a basic theoretical problem exists.



52

_______________ _________________ __________

D2 D3 D4

_ _ _ _ _ _ _ _ _  

c x 
_ _ _ _ _ _

A

D1

(a)

Original Border
Perturbed Border 

-i
D2 “3 4

A C,~ B j
X

E— — 
~T —

-j
D1

( b)

FIGURE 12 The Identification of Adjacent Domains

I
_ _  _ _  ~~~~~~~.—- - • - •~ - • ~~~~• •  ~~~~~ --•~~-~~~~~~~~~ - -~~~~-



1 ~.3 Domain TesUn~~~or Compound Pre~~~~~ es 

•

Assumption (3) s ta ted that a pa th contained only simple pred icates , and

this implied that the set of input points could be characterized quite

simply as a single domain. We must consider what complications can occur

for compound predicates , and how the domain strategy can be generalized

to test paths containing these predicates.

Th. set of Inputs correspond ing t o a path is defined by t he path

condition , consisting of the conjunction of the predicates encountered along

the path. If a compound predicate of the form ~~(i)  AND C(i+l)J is encountered

on the path , the path condition is still a single conjunction of simple

predicates , and the only difference is tha t two of the simple predicates

are produced as a single branch point on the path. No modifications of the

domain zesting st ra tegy  are required in this case.

However, compound pred ica te s  u s ing  the Boolean operator OR are more

complicated . Consider a path containing the following predicates:

C1, C2. .. .. fc~ OR ~~~~~ .. . C~

The path condition in this case is the conjunction of these predicates , and

in standard disjunctive normal form :

[C 1 AND C1 AND ... ANT) C
~ 

AND ... AND C~ )

~~ [C
1 

ANt) C, AND ... AND C ANT) ... AND c~~I

The .et of input data points follow ing this path consiats of the union of two

domains , each defined by the conjunct ion  of •imp~e predicates , and in general

any number of th .se domains are possible.

Assuming l inear predic ates , each of these domains is a convex polyhedron,

but the domains may overlap in arbitrary ways. The major problem caused by

these compound predi cates is tha t the domains correspond to the same path, and

the assumption that adjacen t domains do not compute the same function is violated .

which partially overlap , and domains which totally overlap .

j 
We identify three cases of importance: domains which do not overlap , domains



—

The first ca se is indicated in Figure l 3 ( a ) ,  whe r e domains D1 and D2
are defined by the compound predicate [C 1 

OR C, J ,  and domain D 3 corresponds to

some other path. In this case our methodology can be applied to each domain

separately, since the two domains for this path are not adjacent.

In Figure 1.3(b) , the domains pa r t i al l y  overlap , where D1 
U D, is the

domain defined by C1, and D 1 U D
3 is the domain defined by C.,. In the example

w . cannot test the domains separatel y , since they are adjacent and the same

unction i~ computed in each. For example , any test point for C 1, selected

i:..~ng that part of the border between D1 and D3, is ineffective since the same

results are computed for it in both of these regions. So , in this case we

must insure tha t the adjacent  domain assumption is satisfied by selecting I

test points for C1 and C2 which lie in that part of the border adjacent to a

domain for  some other path.

In order to deal effectively with this case , some extra anal ys i s  will have to

be made , first in order to identif y this second case , and also to identify the

actual domain , which is no longer convex . The border , of this domain are shown

in bold face in Figure 13(b). This is probably no longer a practical approach ,

especiall y f o r  hig her d imensions .

The third case is shown in Figure 13( c ) ,  where the domain D 1 fo r predicate

C1 is a subset of the other do ain , U D2, which is obtained f o r  predicate C
2
.

This presents a serious problem since there are no test points for border B of

domain D 1 which can sa t i s fy  the adjacent domain assumption , and therefore B cannot

be tested effectively. The technique developed in the pre vious section should

help to ident i fy  this case . However , even if this case could be identified , t es t ing
-V

.

for border B is no longer a practical procedure.

So, in sumeary, a compound predicate of the form (Cl AND C23 is the same as

two simple predicates , and domain testing can be applied to a domain defined with

this type of compound predicate. In addition , if the compound predicate

_ _ _ _ _  ___—___ _ _ _  -—



/ 

D3

(a)

DJ
~~~~~~~~~~~~~~~~~

Border B~~~J
x D,

/

x

(c)

FIGUR E 13 Domains Defined With Co.pound OR Predicates

56

is of the form [C 1 OR C2] and the domains a re distinct , domain testing can be

applied to each domain separately. However, if the domains overlap, this

introduces the problem of adjacent domains which compute the same function .

Although vs may not find effective test points for domains which overlap in

arbitrary ways, we can recognize this situation and identif y it as a border

which cannot be tested effective ly.

4

.1

J

j
j

1

• __________
~1

I. - - ~~~~~~~~~ -~~ - -. — ----— ..-.- — . - - -- --~~~~~~~~~~~ - -~----~~--—~~~~~ -
—

- - -—~~~ - -~~~ .~~ -- -—-- —-~~~~—--~~~-~~~ - - - -

57

CHAPTER 6

ERROR ANALYSIS OF DOMAIN BORDERS ANT) DISCRETE SPACES

An error analysis of domain borders is needed to resolve the following

questions:

i) How small shoul d £ be chosen in selecting an OFF test point for linear

border. , and where are optima l locations for the test points?

ii) We required the OFF test point for a given border to satisfy all in-

equality borders except that being tested ; how do potential errors

in other borders of the domain affect this r.~uirsment?

iii) What are the difficulties in applying domain testi ng in a discrete

space or in a space in which numerical values can only be represented

with fini te resol ut ion , and can these d i f f icu l t ies b* circumvented by

taking reasonable precautions with the method?

• These and other error analysis problem. are dealt with i~ detail in

reference (ii . It is inter es t ing to observ e that the an swers to questions

1) . i i) , and iii) all involve the same worst-case situation: when two adjacen t

l inear borders of the same domain are nearl y parallel. Figure 14 ind icates

the two cases which can arise from ad j acent linear borders which are

nearly parallel . Figure l4 (a) shows a given border segment U in which the

two adjacent border segments U and FQ both make large externa l angles

and 02, nea r 180 , with the given border El. This leads to very smell

supplementary internal angles 0
1
and •2’ and especially for •2’ this results

in a very sharp “corner” of the domain. In Figure 14(b), the adjacent borders

FE and FQ are again nearly parallel to the given border El, but a differen t

case is crea ted . In this case , external angles G
~

and are very small,

and the internal angles l~ and are both nea r 180 .

~~- - - - ~~~ - -~~~~-~~~~~~~~, -~~~~~~-


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

58 —

J

i

(b)

•1
FIGURE 14 Adjacent Border Segments Which are Nearly Pa rallel

-
It



We will b r i e f ly  argue in this report tha t one of these two situations is

the key to the analysis of questions i), ii), and iii), and we refer the

reader to reference (12 1 for further details and proofs. SectIon 6.1 intro-

duces an error measure which will indicate the best location for  each of the

three test points. Section 6.2 will deal with the problem of how interac t ing

border changes may affect the location of the test points. Section 6.3 briefl y

introduces the problem of domain testing in discrete spaces , and gives a

s u f f i c i e n t  condition to guarantee effective test points can always be chosen.

Since all the above arguments are given only for two dimensions , Section 6.4

will show that the same basic approach is effective for  higher d imensions .

.~~ 
An Error Measure for Test Point Selection

In Figure 14(a), consider the selection of three test points A , B, and C

f o r  testing border segment El. It is shown in reference (12] that the best

positions for  two of them , say A and B , are points E and F , so the remaining

problem La the locatin n of teat point C. We have observed that Li th e given

border El is in •rror , then tCst points A, B and C will fail to detect errors

if the correct border is one whic h intersects lIne segments AC and BC . Thus

giv•n C which is at a distance c from the given border and halfway between

A m d  B , an appropr ia’e error criterion could be the “number” of erroneous

points which would be undetect ed , I.e ., thi ares betw een the two b~ rders, possibly

limited by either or both of the extensions of the adjacent borders El and FQ.

It can be shown that this area measure can be bounded by the expression

j11j2

+ 2c cot e ,

where $ ii the larger of 
~i and ~2-~



~~~~~~~~~- - , -- ~~~~~~~~~~~~~~~~ -~~~~.-  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

60

In order f .r thLs error m,~asure to be finite , it is necessary that both e~

and 
~2 

are not too close to 180° for gtvt~n t .  If [cot e [ ~’~ ~~ , then th e error

neasure is on the order o~ t~ EF. This gives sone guidance as to the choice of

b r  po in t  ~~~.

6. .~ Interacting Border Segnents

In presenting the donain strategy, we required the OFF test point to satisfy

all inequality borders except the border being tested . Usually this does not

impose much ~f .i c¼ ’ns~ raint on the choice of the OFF point , but Figure lw(b)

illustrates .~ situat~.on I:: which a severe constraint exists. We can show that

• + co t  ~~ ,

and si:~ce c h f’r c ’ ’ ,1:~~ the OFF test point , this again shows the effect if

either 4~ c’r or br~ h are very small.

The sam e situ ati~’n applies for interacting adjacent borders , and is illus-

trated .n Figure 15 . As long as the OFF points C 1 
and C

2 
for each of the adjacent

~‘,r~ ers sr. ~h~’sen .:t jcientl v c se to those borders , and the external angles

~~
• and ~ are not t~’o s~~ 1I , then the adjacent borders have a minimal influence

on the selec t i n  o: the ~FF point C ft’r border El. For example, point C

must lie ~ns~c~ trIangle FF~ determined by given borders EP and FQ. The correct

border . w h l . h  po•e t~~t worst case in limiting the selection of point C are

shown as dashed lines in FiRure 15; these limiting correct borders are determined

by how close C~ and C
2 

have been chosen to their respective test borders. As a

r e .8~~i~~ of these conditions , point C is constrained to lie within triangle EFV,

a more restrictive condition than presented by triangle Ely. It should be

~1ear r~~ ’ i: either ~ r — - is t~ t’ small , or either C1 or C, is chosen toe

far !r~~ ‘ t :  ~c ’v” test b~r~ er , th~’ r~ e.on from whirh C could be ch~sen

would become restricti vely small.



_____ _ _ _  _ _

61

U

/ ~
.4

/ V ~~

,

~~/
/ E\

~~~ A B 
F

p Given Borders Q
Possib’e Correct Borders

FIGURE 15 Effec t of Interacting Ad jacent Borders on Test Point C

~

.--—— -—- —-—~~~~--~-~~~
.- —- .—— — -.~~

. , - ~-- -~ -~~~~-. ~~~~~~~~~~~~ ~~~~~~~ ..— .-~~~~~~~~~~ — - -~~ - - ~~---
- - — — -~~

-
~
--

~~

1

. .

~~

.

~~~~~~~~~~~~~~~~~~

_ _ _ _ _

6.3 Discrete Sp~ce j,~nRIy~ t.~j

The previous several sections have indicated that if adjacent borders are

nearly parallel , then test point C is required to lie very close to the border

being tested . But in a discrete space this could cause a severe problem , for  no

discrete point nay exist that close to the border . Similar problem s exist for the

ON test poin ts A and B , bo r it may not be possible to choose them at extreme

points  of the border.

For the discrete space we shall consider a two dimensional lattice , with

uniform spac ing ~ in both dimensions. This models the situation where the

same data representation , integer or fixed—point , is used for two input variables.

For simplicity , let us again assume that points A and B can be chosen as

points E and F. We shall present a sufficient condition for a given domain with-

in this discrete lattice which guarantees that an OFF point C can be chosen as

a lattice point for each border so tha t the area criterion of Section 6.1 is finite.

The result is based upon the follo~ ing two observations. First , any circle of d ian’eter

v~~ .~ always contains at least one lattice point. Second , from Figure 14(a),

note that if either external angles 3~ or ~~ are too ne ar 180°, then the “width ”

.‘~~ the domain will tend t te very small in terms o~ the  lattice resolution .~~~. 
—.

More formally , define the d iameter d of a convex po l ygonal domain to be

the shortest distance from any extreme point to any domain edge not adjacen t

to that extreme point; this corresponds to our informal argument about domain

“widt h ’ . The sufficien t condition can then be stated as: 

- .- ~~~~~~ . -~~~~~~-- ~~~ .— ~~~- ..~~~~~~ - — -- ~~~~~~~~~~ 



- -~~~~~ ---- ..--~~~~~~— ~~~~~~~~~~ ~~~~~~~ —~~~~ - - . -~~—

63
Proposition 5

Given a domain with  diameter d in a lattice with resolution A , if

d > — ( 2 . 1 2 )  A ,

then a latt ice OFT point can be chosen for every border , and moreover all

externa l angles ~i and ~2 are constrained by

El
Cot 81 + cot 0 21 < 

3

tt is clear that there are some domains in a discrete space which cannot

be tested , but these are pathological cases where one of the domain dimensions

is on the order of the l a t t i ce  resolut ion.  MQreover , the result indicates a

simple computation in terms of the domain diameter to determine when such

domains are presented fo r  test ing . For domains which can be tes ted in a discrete

space, the important result from Proposition 5 is that a restriction has been

obtained on angles 
~ 

and 
~: which precludes both angles which are close to 180°

and angles which are too ~~al1 .

6.4 Extensions of Error Analysis to Hi2her D imenafons

The previo us arguments have all been made for  two dimensions , so it is important

tha t the essen tial ideas can be generalized to higher dimensions . We can observ e

that if two border segments are adjacent , they are intersecting hyperp lanes. Again ,

probl ems may arise if these two hyperp lanes H 1 and H2 are nearl y para l l e l , and

this can be measured by taki ng the inner product of their unit normal vectors

a1 and °2 ’ yielding the cosine of the angle a between them :

C05 ~ — fl
1

fl
2

- ~~~- -—- — -~~~~~ - ~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—~- - ~~~- , --—

64

Co isider Figure 16 which indicates the testing strateg~’ for t’~ree .4imengions.

is assumed to be the border to be tested by ON poin ts A1, A 1, A3 and C is

the OFF point . H, is an adjacent border nearly parallel to H1, and H1 intersects

H , at line L. If it is suspected that C may not be chosen close enough to H1,

only those borders which make an angle a of 100 or less with H
1 
need to be in-

vestigated further .

To determine a test point C , we need to select that correct border hyper—

plane wh ich is the wors t case re la t ive t o  border H,, and then determine whether

or not these two hyperplanes intersect. This computation is quite straight—

forward , and the following algorithm together with Figure 16 should indicate how

it can be accomplished :

( a )  selec t the ON point A~ furthest from line L (this is A 3 in Figure 16) ;

the worst case correct border hyperp lane H
3 

is then determined by l ine

I. and l ine segment A iC;

(b) drop a perpendicular l ine segment from A i to line L; this makes an

angle ~ with line segment A jC ’~ where C ’ is the projection of point

C down on the hyperplane H
1 

being tested ; recall that C ’ is known,

for point C is obtained by first finding C ’;

(c) the ang le ~ between H1 and H3 
can be found by

C
tan~~~~~_ ;

A~ C ’ cos f

(d) if • < ~~, then hyperplanes H, and H3 
do not intersect; otherwise , ~

should be chose n smalle r so that this condition is satisfied .

Again , in this analysts , the fact that adjacent borders H1 and H2 are 
nearly

parallel prove, to be the key point in selecting test point C. Yet , the above

alg orithm can be used to choose C so as to compensate for this condition .

—U 

~~~~~~r n- — . - -~-


_ _ _ ~~~~---.-~~~~ .—-—~~~~~~~~ ~~~

65

Line L

\

\

\
\
\

~~

• • • • • •

/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

., 

/

A 
)
~‘~~~j ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,~ 2Hyp e rp l one H 1

LOOKING ALONG ,,-Hyperp l one H 1
LINE L • L

a / ~ /
-Hyperplone H3

Hyperplone H2 _~~~~4

\ 

C
~~
’
~’~~X4

~ ‘ R E  l~’ Error Analysis in Three Dimensions

—-— —~~~~~~~~ 
-
~~~~

- --—
~~~~~~~~~~~~~~~~ 

..



66
CHAP TER

CONCLUSIONS AND FUTURE WORK

The basic goal of this research is to replace the intuitive principles

behind current testing procedures by a methodolog y based on a formal treatment

of the  progra m t e s t i n g  problem . By formulating the problem in basic geometric 
J

and algebraic terms , we have been able t o  develop an effective testing methodology

whose capab il i ti es can be precisel y defined . In addition , since program testing

cannot be completely effective , we have i d e n t i f i e d  the limitations of the strategy.

::~ several cases these limitati ons have proven to be theoretical problems inherent

to ~~ general program testing process.

The main contribution of this research is the development of the domain

test lrg strategy. ~nder certain well—defined conditions the methodology is

guaranteed t o  detec t domain domain errors in linear bordec s greater than some small

magnitude c. Furthermore , the cost , as measured by the number of required test

points , is reasonable and grows only linearly with both the d imensionalitv of the ]
input space domain and the number of path predicates. Domain testing also detects

transformation errors and missing path errors in many cases, but the detection of

these two classes of errors cannot be guaranteed .

Domain testing has also been extended to clacses of nonlinear borders , and we

have shown tha t the methodology generalizes to any class of functions which can

be described by a finite number of parameter.. Unfortunately, nonlinear predicates

pose problem s of extra processing which probably preclude testing except for re —

stricted cases.  For example , just finding intersection point, of a set of l inear

and nonlinear borders can require an inord inate amount of pro cessing .

Coincidental correctness is a theoretical limitation inherent to the program

testi ng process , and we have argued that it prevent, any reasonable f i n i t e  testing

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _- 



67

procedure from being completely reliable. In particular , the possibility of coin-

cidental correctnes s means tha t an exhaustive test of all point , in an input

doma in is theoretically required to preclude the existence of computation errors

on a path. Within the class of all computable functions there exist functions

which coincide at an arbitrarily large number of points , but if there is

sufficient resolution in the output space , coincidental correctness should be a

rare occurrence for functions commonly encountered in data processing problems.

The class of missing path errors , particularly those of reduced dimensionality,

has proven to be another theoretical limitation to the reliability of any finite

testing strategy . Although our methodology cannot be guaranteed to detec t all

instances of thi. type or error , it can be extended to detect some well-defined

subclasses of missing path errors. Unfortunately, the extra cost of this modi-

fication may be unacceptably h i t~. Our analysis of miasing path errors has

shown that  the cause of the d i f f i c u l t y  is that the program does not contain any

indication of the possible existence of a missing path error . Therefore, without

additional information , a reasonable testing strateg y for this class of errors

cannot be formulated .

The domain testing strategy requires a reasonable number of test points for

a single path , but the total cost may be unacceptable for a large program con-

taining an excessive number of paths . In particular , this may occur for large

programs with complicated control structures containing many iteration ioops.

Addi t iona l research is needed to s u b s t a n t i a l l y  reduce the number of potential

paths . One area being investigated takes advantage of the fact that pro~rar

odules are often independent in that the control flow of one does not depend

upon variables defined in the other. In this way the combinatorial growth of the

num ber of domains to be tested can be controlled , and the domain strateg y can be

made more practical. It r emain s to be shown to wha t extent this independ ence

~ 

-----~ ~~~~~~~~~~~~~~~~~~~~~~ --- ~~~~~ -~~~- - ~~- 

—

~~~

~~ ~

-- ._—~~~~~- .--— --. -~~ - .--- - -

68

property can be applied , and experimental evidence is needed of how frequently

independen t modules occur in widely available programs.

We have assumed that an “oracle ” exists which can always determine whether

a specific test case has been computed correctly or not. In reality, the

programmer himself must make this determination , and the time spent examining

and analyzing these test cases is a major f ac to r in the high cost of software

development. One possible avenue for f u t u r e research would be to automate this

process by using some form of input—output specification . If the user

provides a forma l description of the expected results , the correctness of each

test case can be decided automatically by determining whether the output

specification is satisfied . This would reduce the cost of testing tre-

mendousl y , and these new testing techniques would gain acceptance more quickly

since the tedious task of verifying test data would be eliminated . In

addition , any extra information supplied by the user might be useful in

specifying special processing requirements which would indicate the existence

of a possible missing path error .

The domain test strategy is currentl y being imp lemented , and will be

utilized as an experimental facility for subsequent research. Experiments

should indicate what sort of programming errors are most difficult to detect ,

and should yield extensive dynamic testing data. A most important contri-

bution would be to indicate both programming language constructs and programming

techn iques which are cas te r t~~ test , and thu s would produce more re l iab le software .

——-~*—--- ~~.- .- ——— - - - - - - - - - —-—-—-- . —“—— —~- - ~

- —~ -~ . .~~~~~~~

REFERENCES 69

1. Boyer , R.S., Elspas, B., and Levitt , K.N., “SELECT——A Formal Syst for Testing
and Debugging Program s by Symbolic Execution ” , PROCEEDING S—l975 Internationa l
Conference on Reliable Software, Los Angeles, Ca ., Apr il 1975 , 234—245.

2. Clarke , L.A. , “A System to Generate Test Data and Symbolically Execute Programs”,
IEE E Transactions on Software Engineerin g , Vol . SE— 2 , No. 3 , Sept. 1976 , 215—222.

3. Cohen , E . I . and White , L.J., “A Finite Domain-Testing Strategy for Computer
Program Testing ”, Technical Report 77-13 , Computer and Information Science
Research Center , The Ohio State Univers i ty , Augu st , 1977.

~~. Cohen , E . I . , “A F in i t e Doma in—Test ing S t r a t egy for Computer Program Testing ” ,
Ph.D. Dissertation , The Ohio State Unive r s i ty , June , 1978.

5. Elshof f , J.L., “A Numerical. Prof ile of Commercial Pt/I Programs”, Report No.
GMR~ l927 , Computer Science Department . General Motors Research Laboratories ,
Warren, Mich., Sept. 1975.

6. Elshoff , J.L., “An Analysis of Some Commercial Pt/I Programs”, IEEE Transactions
on Software Engineering, Vol. SE—2 , No . 2 , June 1976, 113—120.

7. Goodenough, J.B. and Gerhart , S.L., “Toward A Theory of Test Data Selection”,
IEEE Transactions on Software Engineering, Vol. SE—l , No. 2, June 1975, 156—173.

8. Howden, W .E . , “Methodology for the Generation of Program Test Data”, IEEE
Transactions on Computers, Vol. C-24, No. 5, May 1975 , 554—560.

9. Howden , W .E., “Reliability of the Path Analysis Testing Strategy ”, IEEE Trans-
actions on Software Engineering, Vol. SE—2 , No. 3, Sept. 1976, 208—215.

10. Knuth , D.E., “An Fapirical Study of FORTRAN Program s”, Scftware - Practice and
Experience , Vol. 1, No. 2, April—June , 1971, 105— 133 .

11. Ramamoorthy , C.V., Ho , S.F., and Chin , W.T., “On the Automated Generation of
Program Test Data ” , IEEE Transactions on Sof tware Engineering, Vol. SE—2 , No.
4 , Dec . 1976 , 293—300 .

12. White , L . J ., Teng P . C . , Kuo, H.C., and Coleman, D.W., “An Error Analysis of the
Domain Testing Strategy ”, Technical Report 78-2, Computer and Information Science
Re search Center , The Oh io S’~ate University, August , 1978.

_ _ ~~ - - -

A DOMAIN STRATEGY FOR COMPUTER PROGRAM T E S T I N G

APPENDIX B $

From Zn fote ch S ta te of the Art Report , Software Testing, 1978.

E. 3 W?~jt. &nd S Coh.n

Ospa rta.~ t of Cosputsr asd X n f o r ~ at i n ~~~~~~~~
The Oltio Stat. UnLv .rstty

CO1’mbus ON

ACsIoe z . f D c f e t w r

?A~ •.,e’,o,. ~ o..IS Zi ~. to t h a ,* a Chandra ..*.,as, for ~lJ. e..~~.t.,,e. *a~ pr.par~~.,q

ti~a• sap., 1,4 4~~ pIr~~icviar . f or - i~~~~ ce ,,trjbveao ., 0o,c.,,1,,f tI~. 4.f~~aae1o.. at

4o..i. .,,4 coapv ta t ~~’~. •r t or . .

??I~~a ~~~~~~~~~~ WI. •.ppote .4 i .” par t by t .’~. A , , ~ore • OVf ~~c~ of Scl e t , t l t L c Re l•a r ch
G,.,, t ~~~~~~~~

3 W7~~~~~ and £ I Cof~.n

323

~~~~~~~~~~ 
- - . -—-- -- --— —-,,--~— - - -_______ 4



— _ _ _ _ _ _ _ _

J •~~~TS ~~~~~~~~~ h. SSC( deq ve 11~ •J.ct,~~ca; •P , qL l , .•r I n l  (r o e  t i ,. o,gv .r.ltv of

• 1nca1 ’  a t L  I n  J Pd 2 .  and t , .  p?i D d.qr .. i,l • 4 . c t t iC a Z  •n9in..ri~~q (ro e the Vn iv. r ai t t

of g c?, 91n i n  i~~4 7 .  S. t u  cu r r . n t~~y a Prof .. .or  of C e a p e t a r  an d t n t o r a a t I O n  Science

.n4 of 5 .ctriCa t , , qg ne • r i hd  at Th. Ohio Stat• Unir.tIitW . 511 Current r.a..rch iat•r~

..tI 4.a w i t h  t ? ~~ a n a l y a i I  of  a qorithhI a n d  • ot t w l t C  an a i ,,.i~ and te. tinq . H, hai

p~~b 1 i u h C d  in th• ar .aa  of patt ern , . c o 5 n i t i ef l .  a u t O a a C i C  decvaent cla..ifiCati OA . C05

b~~n a t o r i a 2  coepvt i~~c an d graph t h. or , .  U. ha . .er v.d a. a c o n I u f l a t~t f or  th• OnII”~~°

5.uarc h L a b o r a t o ry  ari d RoChw•~~2 nt.f natioi ,a~ Corporat~~Ofl. an d 
ha. had ,n,ln..riAS

wor &  .,per*.nce w i t h  Ui. Dow Ch..icai Coapa n. . Ui. latt.~~~# q.~~~rJa i  R.. .a,ch I n I t* t s t ’

and th e  t.ockh.•d Ug ..ii. and SpaC• Co—pany. Dr Whit. I I a.ab.r ~f e~~. X 5 1 COCPUtCt

SoCi,tV .  ACS . lidS, and Sigea X L .

t COIlS yap born i n  bo.ton . Iaasaebep. t t l  In jISO . I. r.c.iw~4 th e IS 4•fF.• L ’
f ro e  *.na.•la•t P o l yte c h n i c  In.titv te. Ir o y ,  HE . I., 1’ $, and the IS and PhD d.,r.ea .

both in Co.p.t.r and (ntors. t ion Sci.,,c. . roe fh. ~ hj o  S ta r .  t’ n ’ . r• i t y.  Co 1 ue5 ’’

Ohio . in :.~~3 •nd ~~?I  r.DpeCtJ.•iS. He w a a  a H...arch and ?*aChInS a. .ocLat•  ~n

D epar t eSt  of Co .pu ti t  and  t n f o r .a t i o s l  Sci.nc. of The Ohio S t a t e  t n i r . r u i t y  (e*C

to  I~~ ? S .  Se .ork .d au  a p rograaee r  tot  l e e t e r iC i .  m e .  .‘-‘~~ u ab ~~I .  Ohio. L A  ,5~~4 •,d .e

I

. u~~pte.. •n.lyat for t he  S t a t e  Data  C .ntre. CotuubuI .  0*1.. in ~~~~~ I• a

• W i t h  The S y . t • • P  Producta  O t . i a l o A  of Ill Co,potat iOn . Pew ~~hI.epeie. •r Hi. CVt~~’~~

Ln t .reftI gnc ~~yde prograc t..tinq . •ottwar• 
r. l i . b i l i tg .  and h igh  p.rfore nCe

d • a i g r . Dr Cohen ii a •eaber of SCI , 1151 , SigS• Ii. and Ph i 5.551 Phi .

_I 
~ 326

___________



A DOM AIN STRATEG Y FOR COMPUTER PROGRAM TESTING

I NT*~OU?~~ I ON

Prog r am testing is an inherently practica l act ivi ty, Since every computer p rog r am must
be t.st.d befor. any confidence can be gain.d th at the proqr~~ p.rforms it. tnt.ndod
fimction. Some of the best designed software has required that nearly as •uch effort
be spent planning and iaplenentinq ~he tes ting process as was invested in  the actual
coding. What the practitione r needs are bett.r guidelines and systematic approach..
in the d.sign of the testing process to replac. th, ad hoc approach wh ich is now so

preva lent in the testing of computer software .

t would be ideal if there existed a ‘theory of testing ’ which could be used to rigor-
oiisly select program test po in t s .  The prob lem has unfortunately proven so intractab le
that no comprehensiv , testing theory exists. Research by Goodenough and Gerhart (00?)
and Rowden (006, 009) has resulted in an accspt.d body of theo ry concerning testing .
and has provided a rigorous basis for further research in this area.

The ob3ecttve of this pape r is to pre.ent a mathodoloqy for the automatic selection of

t.st data. under approp riat. asaump tions . this methodology will generate test data
which will detect a part icu lar cla ss of errors in a program , vi z . domain errors as
d.ftn.d by Nowden (009). The proposed methodo logy is also described in greater detai l
in Cohen and W hite ( 0 0 3 )  and in Cohen ( 0 0 4 ) .

The goa l of the testing process is limited to the successfu l detection of a program
error if any exist.. My atteap t to identify the error , its cause , or an appropriate
correc tion is properly categorized as deb ugging , and is beyond the scope of our goal
in the testing process. Thus testing is essent ially error detection , white debugging
is the .ore diffi cu lt process of error correction. Of course , in pract ice these two
activ ities usual ly overlap and are frequently combined into a single testing/debugging
phase in  th. software development cycle.

An importan t assi.ption in our work is that the user (or an ‘Oracle ’ )  is available .
who can decide unequivocally if the output is correct for the specif ic Input proc ess ed .
The Oracle decides only if the output values are correct , and not whether they are com-
puted correctly. If they are incorrect , the oracle do.. not provide any infor mation
about the error and does not give the correct output valu.s.

The organizat ion of the paper s as follow . In the first section , .ome preliminary
concepts are de ’ined and discussed . Some asst~~ptLons must be made concerning the langii-
age in wh i ch the given compu te r prog ram is writt en , and the ramification s of certain
language constructs are ex plored . The important concepts of program path and path pr.d-

• icates . together with domains , are defined and eharacterised . The case of linear

327 

~~~ - - -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


NlUt e and Cohen

predicates is g iven particu lar emphasis, since, in that situation, the domains ass~~~
the simple form of convex polyhedra In the input space .

Logical errors in a comp~ Ler program can be viewed as belonging to one of two classes
of .crorst

e ‘Domain errors ’

e ‘Computation errors ’.

Informally, a So.aia er ror occurs when a specific Input follows the wron g path due to
an error in the control flow of the program. A path contains a co.pucat~ on e r r o r when
a specific input follows the correct path , but an error in some assignment statement
causes the wrong function to be computed for one or more of the out put varia bles.

The proposed methodology, called the do .air, a r r a c. gv , is designed specifica lly to 6.-
tect domain errors . We w il l discuss two f und amental l imitations inherent to any finite
teat strat egy . One such limitation might be ter med cojncid.ncai correctness. This
occ~&rs when t he computation for a sp ec if ic test point is incorrect , but the output value
happen, to coincid, with the corre ct value. This test point would then be of no as ais t-
ance in the detection of t~~ domain error which caused the change in control flow .
Anothe r inherent tes t i n g l imitation has been ide n tif ied by Nowden (009), and might be
called a mi l l ing path error, in which a requ ired predic ate does not appear In the given
program to be tested. This could result in a situation where no testing strat egy can
systemat ically determine that such a pred icate should be present.

The domain strategy is developed by uti lizing the structure of the input space corres-
ponding to the prog ram . ~iore sp e cif ica l ly, the control flow partition s the input space
into a set of mu tu a l l y exclusive domain s . tach domain ccrTesponds to a part icular path
in the program , in the sense that the set of input data p oints in that domain will
cause the corresponding path to b. executed. The st ra t egy prop osed is path orientedi
in testing a particular path, we are actuall y testing the computations performed by
the pr ogram ove r a spe cific input space domain.

Given a parti cul ar path, the fo rm of the boundary of the corresponding domain is com-
pletely deter~xtned by the pr edi cate i in the control statements encountered in the path.
Thus, an error in such a predicate will be reflec ted as a sh ift in the bound a ry of the
correspond ing domain. The testing strateg y to be described tests a path for domain
errors, I e, detects domain boundary shifts by observing the output valuss for a finite
n~~ ber of test data having a prescr ibed geome trica l relationship to the ent ire domain
and its boundary. These output va t es ar . compu t ed by execu t ing the sequence of assign
ment stat em ents cona t itut ing the path . The method requires no informa tion other than
the successful ly compiled program for s.l.ctinq effective test data. Thu. the problem
has been converted from its usual form as an informa l stud y of programs and prog raa~~inq
to a mor, forma l investigat io n of the geomet ry of input space doma i ns .

The strategy is Initiall y described for the case of linear predicates .nd a two-dimen-
sional input space. Por the linear case , it is shown that, under app ropriate asst~~~t
tons , the numbe r of test points to reliably test a domain grows only linearly with the
n ber of predicates along the path and with the dtm ens tona lity . The techniques are
then extended to N dimensions , and various other extensions are considered , including
nan—linear predi cates.

A domain boundary error analysis is presen ted , which ii helpful in choosing the best

locat ions for test point .. The applicat ion of the domain strategy in d iscre te spaces

328

~~~~~~~- - ~~~~~~~~~~~ -- - - — -~~ -~-~~~~ • —~ —~-~~~~~ .-~~- •~~—*—-—•— • - -



5h1t. sad Cohen

is analysed to stud y the effect of roundoff error in selecting test points.

In the concluding sect ion a number of open questions generated by this investigation

are presented , and the prospects for the practical application of the domain testing
strategy ar. evalua ted .

~~~5G~Q(JN~ AND P~~L.j*I~A~IfS

~~oqra ing langu age es~~ ipt J ons

In order to Investigate domain errors , we need to consider the language in which pro-

gr ams will be wr itten. The control struct ures should be simple and concise, and should
resemble those available in most procedure oriented languages . For simplicity we

aes~~e a s ing le real-va lued data type , and this is converted to integer va lues for use

a. DO—Loop indices. lecause this is a path oriented approach , no extra control flow
problem. ars introduced by block structure. Thus no provision is made for block struct-

ure, as it would only add extra book-keep ing to keep track of local v aria bt~ s and block
invocation or exi t .

A n~~ber of proqraeming language features are sss ~~ ed not to occur in the programs we
aze to analyse for domain errors. The f i rs t f eat u re is that of arrays , despite the
fact that arrays coemonty occur in prog r ams , a predicate which refers to an element of
an input array can cause ma3or complications 4 Ramamoorthy (011)), A secon d class of
language feat-ar.. which wi l l be excluded in our analys is is that of subroutines and

functions. The prob lems of side effects and of parameter passing pose d i f f Icu l t ie s
for domain test ing . ?he third class of features which are not currently analysed by

domain testIng include non-numerica l data type s such as character data and pointers.
These ar. admi ttedly very important features , and furthe r research is needed to invest-
igate whether these features pose any fundamental limitations to the domain testing

strategy .

Since input/output tI/C) processing Is so closely linked to a machine or c~~~i ler en-
vironment. we will assun. that all I/O errors have prev iously been elimi nated . Thus
only the most elementary /O capabilities are provtded~ input is provided by a simple
NCAO state ment , and output is accomplished w ith a s imple W R I T E sta t~~~ nt.

The types of control flow co nstr uct s investigated in this research include sequence .
alternatio n , and iterati on control. Since the analys is is path oriented , GOT0 state-
ments could be included without adversely affecting any results, except that program
paths could become quite c~~~lex .

A ll c~~~utation Is accomplished by means of arithmetic asstq~~~nt stat~~~nts witch also
provide the basic sequential f low of control. in each statement a single variable is
assigned a value . The right hand side of an assignment statement is an arithmetic
expreseion using varia bles , constants , and a set of basic arit~~et ic operators— , ., /1.

The general predicate form used for control flow is a Soo lean combination of arithmetic
relational expressio ns . The logical op erators OR and AND are used to form these Roolenn
membinationa . Each sritheet ic relationa l expression contains a relational operator
from the set C’,) , — , 5 , 5, ~~) . These operators form a complete set, and thus the

329

____________ -1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



W h a t e  and Cohen

loq t -~al operator NOT is unnecessary. if a predicate consists of two or mo re relationa l
expressio ns with Boolean op e rators , then it is C Compound pr edlcar e . A a~.pJe predic-

at e  consists of just a single relational expression.

The alternat t~n typ. of control flow 1. achieved by using the IF-TH ( N- ( LSE .( NDI F  con-
struct . The conditiona l assoc iated with the I F  statement is a genera l predicate . Any
well-formed program segment , including th, nul l program segmen t , can be used in the
T14 ( II and ELSE portions of the IF construct . he ENO IF statement is just a delimiter

for the IF construct, whi ch ~lari ftes the nesting structure end eliminates any potent-

ially ambiguous ELSE clause .

A general iteration construct is included which consists of a DO statement, loop body,
and CR000 delimiter. the DO statement can be in one of three forna z

e DO I • IN IT . FINAL . IRCR;

e DO 1141LE general pred icate ) ;
e DO — IN IT . FINAL , INC R W N ! L (  genera l pred icat e

The loop body can be any well-formed program segment , and the ( ROO D is )ust a del imiter
to clarify the scope of th. iter a tIon .

Th. variables used in a program are divided into three classes. If a variable appears
in a READ or W R I T E  state me nt , it is classified as an ;n-ut or ou tp ut  v a r a a b~~. respect-
iv ely; all other variables are at ted pro gr am ~araab2... in order to prod uce a clear
de l ineation between the three types of variables, we assu r e that a given variable be-
longs to only one of the  above three classes.

Prggr a- paths and path pred ic at es

A program can be represent ed as a directed graph C - (V .A ). where V is a set of nodes
and A Is the set of arcs or directed edges between nodes. In  the language jus t  dis-
cussed, we have defined a set of bas ic program elements wh ich consists of a
i R T (, assignment , I F . and 00 state m ent , together with the (M~~ F and (t~DD0 delimiters.
‘he directed graph representat ion of a prog ram .,tll contain a nod, for each occur~ ,nce

of a basic pro gram element, and an arc f r  eac h pos si ble flo w of control between these

eler*nt s. W h ile TW EN and E LSE state m ents do nct ex p l i c i .y appear In the d igraph , the
actions associated wit h them will be repr .sented as nodes in the digraph .

A wail in a dig raph is def ined as an alternatin g sequence of node, and arcs (V 1 , A 1 ,1 ,

V 1. A , , ,, . . . . ,  
~k— l ,k. Vk ) such that each arc A 1,1~~1 is directed froc. node V~ to V1.1.

A co n t ro l  path is then defined to be a walk in the directed graph beginn ing with the
bode for the initial statement and terminating w i t h  th, node for the f Inal stat em ent.
It should be noted that two walks w h ic h  differ only in the n us’aber of times a particu lar
loop in the p rog ram is executed w ill be defined as two distinct control paths. Thus

the nunber of control paths in a program can be infinite.

ivery branch point of the program is associated with a genera l p redicat.. This pred i-
cate eva l uates to true or fa lse , and its value determines which outcome of the branch
will be followed . A predicate is ~enerated each t ine control reaches an IF or DO
state ment in the given language . The pa t? ,  c o nd a t l c n  is the cr’rpound condition which
must be satisfied by the input data point In order for th, control path to be executed .
it is the con j unction of the individua l predicate conditi ons which are generated at
each branch point along the control pat h. Not all the control paths that exist

1

-U

- -  

- 
~~~~~~~ 
. -

r~r

syntactically within the program are executable. If input data exist wh ich sat isfy the
path condItion , the control path is also an ea.cut ~ en p at h and can be used in testing

the program . if the path condition is not sat isfied by any input value , the path is

said to be £nt.aa~~b 1e , and is of no use in testing the program.

A simple predicate is said to be i~~neaz in variables V 1 , ‘~ ‘1n if it is of the

form i

A ,V , + A ,V , • A,,V,~ ROE’ K .

where K and the A i are constants, and ROE’ represents one of the relationa l opera tors
(, , ., I, I,p~) . A compound predicate is linear when each of its componen t simple predi-
cates ii linear.

In general, predicates can be expressed in terms of both program variables and input

var iables. Nowever, in generating input data to sat is fy tha path condition we •ust wor”
with constraints only in terms of inpu t variables. If we replace each program varial,~~
appearing in the predicate by its symbolic value in terms of input varIables , we get

an equivalent constraint which we call the pr edicate interpretat; on . A particular

interpretation is equIvalent to the original predicate ~n that input variable values
sat isfy ing the interpretation will lead to the computation of program var iables which
also sa t i s fy the original predicate. A sin gle predicate can have many different inter-
pretations depending upon which path is selected , for each path will In general consist
of a different sequence of assignment statements. The following program segment pro-
vides example predicates and interpretations.

READ A, B ;

IF A B
TH IN C — B • 1,
CiSC C • B — 1;

C RD IF

IF C a 0
THIN K • 0;

ELSE
DO I — 1,1:

K — f . 2 1 :
LRDOO ,

(‘Dir

IF 0 — 2
THEN F • K • A ;
ELSE F • I - A;

END IF ,

WRITE F,

In the first predicate, A ~ B . both A and B are input variables , so there is only one
inter pretat ion . The second pred i cate, C 5 3. will have two interpretations depe nding

on which branch was taken in the first IF construct . Per paths on which the THEN
C • B • 1 claus e is executed the interpretatio n is B • 1 5 0 or equivalently B 5 —1.
Im.n the ELSE C • B - I branch is taken , the interpretation is B - 1 5 0, or equivalently
B a ~.. Within the second IF-TH(N~ (LSC clause , a nested DO-loop appears. The DO—loop
is ex.cuted~

33)

.~-,__ -

No times if B < I

once if 1 ~ B (2

twice if 2 4 5 < 3

etc.

Thus the selection of a path will require a specIfication of the number of tines that

the DO—Loop is executed , and a corresponding predicate is applied which selects those

input points whi ch will follow that partic u lar path. Even though the third predicate ,
0 — 2, appears on four different paths , it only has one Interpretatio n , 2 A • B • 2,

since 0 is assigned the ~ ~ue 2 A • B in the same statement in each of the four p .ths.

Importance of l~~t.ar predicates

~~e domain testing strate gy becomes particularly attracti ve from a pract ical point of

view if the predicates are assumed to b. linear in input va tiable s , it might seem to
be an undue limitation to require thet predicate interpret ation s be linear for the pro-

posed strategy . Zn fact , however, as the follow ing discussion show,, this represents

no real lImi tation for many important applications.

A nur.ber of authors have provided data to show that stnple proqras~ Iing language con-

structs are used more often than complex constructs. Knuth (010) studied a random

sample of FORT RAN prog rams arid found that 66% of all assignment statements were of the

forma t

v i — V t ,

V I — V , • V 1.

• I
or V 1 - V 1 - V 1.

A ls u 70% of all DO loops in th e progra~ts contained less than four statements. Elshoff

~~5.OO5) stud i ed 12) production ‘l. l pro gram s and s’~~~c 1 s~~ i 1a r results , inc luding

he fact that 97% of al l ar i thmet ic o l e r a t o r s are • or ~~. and 96~ of all expression s

conta in fewe r than two operators.

An experLmen~ of part~ cul a r releva nc e t c th e present cont ext is reported in Cohen (004)

us ing typical ~ita pr oce ss in , ~r t arts . s~nc , p r ogr am f . ~o c t 1 o r . s and proor ar~~ing practice
tend to be reasonably -.iniform In th i s area. A rartJo - samp le o~ ~~ ~~~~~~ pr o-grams was

taken directly from pt c t i or . ~~ta procsss~. n ; app li catL ~’ns for t h i s s t ud y . In th i s

$ static a n a lys i a ea:h predicate is cLa ,s~. fted .,co r i~~r~u to w het ter it is linear or non-

l i n ear , and th e numbe r of inpu ’. variab l es used in ~~~ predicate has al so been recorded .

:n addition , the nt.,etber of ,- po’ -ind epend en t p r edt c ac ~es we re ~abu a ted , since thes e

p red ic Cte s do not produce any t o p ut con straints. ‘h. number of equality pred icates is
also repo rted since ‘ .hes . predicates are very be nef i - ial in reducing the number of test

points required for a domain. These data are surm tartsed In Figure 1.

The most important result is that Only one predicate out of the 1225 tabulated in the
it-.~dy cart po ss iol y be a non — l i near predicate. Th. predicates are also very staple since
most of them re fer to t r y one input variable , and no , r .dicat e in thu sample uses

‘~x~re than two ~rtpu t variables.

In conclusion , while this study b~ no neane repr esents an exhaustive survey , we believe

the sample is large enough to ~n 1ic ts that non—~~t near ~-re d.o.~te interpret ation s are

rarely encounte red in data proceesurt u applications. It is clear that any test ing

*12

f
_ _

~

-
_

- - -
~~~~ 

-
~~~

-
~~~

- 
~~~~~~~~~~~~~~~~

- -
~~~~~~~~

—--- —
~~
-—--

~~~~~~
-
~~~ 

. - •
~~~~~~~~~~~

--
~
--- -—~~~~~~~

--

?otaZ Average

Total lines 12 628 253 31—1287

Procedure division lines 6139 163 13— 822

Total predicates 1225 25 (—115

Linear predicates 1070 21 0—104

Non-linear predicates 1 0.02 0—1

Input-independent pred icates 154 3 0—28

Predicates with I variable 945 19 0—97

Predicates with 2 variables 125 2’S 0—20

Zquality predicates 779 IS’S 0—76

Pi q u re 1, Predic a te •ta t isti 1 for SO C O I OL program s

strateg y restricted to linear predicates is still viable in many areas of programing

practice.

Input sp ace s t ruc tu re

A prog ram which has N input var iab l es and produces H output variables computes a funct-

ion which maps p oints in the N -dimen siona l input space to points In the H—dimens i onal

output space . The input space i~ partitioned into a set of domains. Each dontali
corresponds to a par t icular e~ e0 -uta ble pa t h in t~~e program and consists of the inpu t

data points which cause the path t o be executed . Mcre fo r ma l l y . art inp ut .;a-a do.a i~~

is defined as a set o f input data points satisf y ing a path condition , consisting of a
con j unction of predicates along the path. In thus discu ssion , these predicates are
assumed to be simple: compound pr .dicatss w i ll be discussed later.

We assume that the input space is bounded in each direction by the minimum and maximum

values for the corresponding variab le. These vii: isv constra ints do not appear f- the

e pro gram but are au t om at 1-~t~~l y appended t o each path condition . Since a sing le data type
is used f o r all var i ab l es in our language , each variable w i l l have toe sam e am —max

constra i n t s .

the boundary of each domain u s deter m ined by the predicates in the path condition and
cons ists of b ord er s e g m e n t s , where each segm ent is the sect ion of the boundary deter—
mined by a single si—plc predicate in the path condition . Each border segment can be
open or closed depending on the relational operator in the predicate . A cl os e d border

se gm en t i s a:tua ll- ~ par t of the domain and is formed by predicates with 4, 6, or — oper-
ators . Pin ~~~~~~~ bord.r ..Je.’t forms part of the domain boundary but does not constitute
part of th, domain, and is ‘ r i.d by C , ~~, and • predicates. We shall find it conven-

tent to us. t h e term bo rt. r •‘p.rat ~~r to refer to the relation a l operator for the corres-
ponding pred i ca t e .

Since border s.r en ts in the input space are deter m ined by the particular predicate
interpretations ‘n th e path , h. form of the segment ~na~ be iifferent from •b at f th.

or igina l predicate. For • C a ~~ ’ le , v.th input v a r taf - .s A and B, t f e linear predicate

A C * 2 can lead o a r i . - .ri.ar borde r seqment. P. 8 8 • 2, when C — 85. Sto’ ila r l y,

a non-linear predicate , C A A • B, will produce a linear border segment , A a 5, W oe l

I’’

—~~~
--

~~~--



AQ—A077 414 OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS fle 9~2
METHODOLOGIES FOR COMPUTER PROGRAM TESTING.CU)
AUG 79 B CHANDRASEKARAN • L 2 WHITE AFOSR—17—3416

UNCLASSIFIED OSURF—760722/?84741 AFOSR—TR—79 1o95 NI..
2oF 2

A0fl414

I



10
___ 2 2

L. 
-

4 1 L. L. 
~2’O1•1 

~ L~
~1.s

~~
i1llft25 ~III1~~1~~ 

.

NATIONAj BI~~IAU OF STAi~~~~DS
~~~~~~~~~~~ ~~~~~~~~ ~~~~~


F

C • A~A • A. Sine, a predicat. can appear on many paths m d each path can •xecute a

diff.rent s.qu.nce of assignment statements for the variables used in the predicate .
a s ingi . predicate can have many diff eren t interpretations and can form many diseon—
t inuou bord.r segments for var ious domain. .

Ths total nu~~.r of predicates on th e path is only an upper bound on th. number of
border segment. in the domain boundary since c.rta xn pr.dicat.s in th. path condition
may not actually produc. bordsr segments . An ~s.pu~~.~ nd.p.nd.nt ~r.4~cat. lse .rp ,eeae-

~oa is one which reduc es to a relat ion betw ,n constants and sinc , it is either true
or false regard less of th~ input va lues, it does not further conatrain thu domain. A
r .dg nda,, r pr.4~ car. £ I . r p r e e I t ~~os. La on. which is superseded by the other predicate
interpretal ions . i S. the domain can be 4sf me d by a s t rict subset of the pr .dicat.
nt .rpr .tattons for tha t path.

The general for. of a simple Linear predicate in t e rp re t a t ion ts~

A , X , • A, K , • • An Xn ROP 11,

whe re ROP is the relat iona l operator . ar, input var iables, and A~ , K are co nsta nts.
however, the border segment which any of these predicates defines is a sect ion of th.
surface defined by the equa lity .

At X I • A I X I 4
~~~•~~~~• A n Xn _ K •

si nce this is the limiting condition for the points satisfying the predicate . In an
N- dime nsiona l space this linear equal ity def ines a hyperplane which is the N—d i.sn.i onal
ge nerali zat ion of a plane .

Consider a. path condition composed of a conj unction of simple predicates . Thea. pred i-
cate, can be of three basic types . equalit ies I— ) ,  inequaliti.s ‘. . 4 . i, and
non.qu.stitL.s ( )  . The use of each of the three types results in a mark.diy different
effect on the domain bounda ry . Each equality constra i ns th. domain to lie in a partic-
uLar hyperplan. , thus reducing the d taenslonality of the domain by one . The set of
in.quallty constrainta then define, a region within ha lower d imensional spac, defined
by the equality predicate..

The nonequality linear con straints define hyperplanes which are not part of the domain .
giving rise to open border segments as .*ntion.d earlier. Observe that the constraint

A 0 B i• equivalent to the compound predicate (A C I) OR (A ) B) .  In this form it ii
clear that the addition of a nonequality predicate to a set of inequalities can sp lit
the domain d fined by those I nequa 1 it id into two req ions .

The following ex emple should clar i f y the concepts diecussed above.

ICA D 1,Js
C • I • 2 J — 1,

(P1) I?C 5

TN~ R D • C — Is
CISC D • C • I — .3 • 2j

CR01 F,

r

3”



___ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(P2 ) IF 0 — C • 2
TW IN £ • Es
C I SC K —

ENOIF,

(P3) IF £ 4 0 — 2 J

TH EN P • I,
£1.51 P • .3,

C NO IF a

WR ITE Li

rlqur. 2 shows the corresponding inpu t space partitioning structure for this program.

t
P2

4
I

TEE ~~~~~T TT

CCC

1..

3 - 2 - I  2 3 4
P2 ~~~~~~~~~ /‘

~
—- ~~

/

~~~/
/~
“

(C c ~~~

,,
,
,
/
” CIT

Pi ~UJe 2. lApel spec’. partl 11 onl n~ it Feelers

~~~~~~~~~~~~~~~~~~~~~~ 
-——

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~
-
~~~~~~~

... 
~~
-.

~~~~~

~~~~~~~~~~~ 
- -



the input space is in term , of input. I and J, and is arbitrarily conatrained by tM

fol lowing am -sax condittomsa

— ) 4 1 4 4. —2 4 4 6.

Each border in Figure 2 is labelled with th, correspond ing predicate, and each domain
is labelled with the corresponding path. The path notation is based upon which branch
IT or K) is taken in each of the three IF constructs. e g. TEE.

The first p redicate P1, C ~ 6. will be interpreted as I • 2 J  ) 7 sInce C • I • 2’J — 1.
This single interp retation P1 is seen in Figure 2 as a single con tinuous border segment
across the entire inpu t space.

The second predicate P2 demonstrates the effects of both equality and nonequality predi-

cates. Domains for paths through the TH(N branch are constrained by the equality, and
this reduction in dimensionatity is seen in th. fact that these domains consist of the

points on the solid line segments E’T~T and T11 . Paths through the CISC branch are con-

strained by a nonequality predicate. and the corresponding domains consist of the two

regions on either side of the solid line segments is g. ECK I . This predicate has two

inte rpretations depend ing upon the value assigned to 0 and produces two discontinuous

border seqmen t 5 ET’T and T’I’T.

The third predicate P3 might have four different interpretati ons, but only one border

segment appears in the dia gram . The other three inte rpretations do not produce borders

since they are either redundant, inpu t-indep endent, or correspond to infeasibl e p.stha.

Wit h hr.. I~ construct. we have eight control paths , but the diagram contains only

five domains since three of the paths are infeasible. Also many of these domains have

f ever than three border ..q~ents b.caus. of redundant and input-independent interpretat-

ions. Fron this example we can conclude that the input space partLtIaM&nq structur.

of a program w it h  many predicates and a larger dimensional input space can be extremely
complicated.

The foregoing d.ftnitioris and the example a l low us to characterize nor, precisely doma ins
whi ch correspond to simpi. linear predicate interp retations . For a forma l statement of
the characterization , we need the following definitions. A set is eerie.., if for any

two point, in the set, the line •sqaent joining these points is also in the set. A

conw•. p o l .,h.d ro i. is the set produced by the intersection of the set of points satisfy-

ing a finite s,. ber “f inear .qualiti.e and inequalities.

Propositi.. I

Par an execution path with a pet of .iaql. linear equality or inequality predicate

interpretation s, the input space domain is a single convex polyhedron. If on. or more

simple lineir nonequality predicate interpretations are added to this set, then the input

space domain consists of the union of a set of disjoint convex polyhedra.

LRNQP CZ.ASSIFICATIOM A$D T4D~RZTtCAj, ~~Q~5

Definitions of ty~~~~ s of *rrQr

The baste Ldeae behind the classlfteatlon of errors that we use ar. du. to Rowden (0O~ ) .

336



but our approach to defining them is s~~~ what more operational than that given in his
paper .

Pro. the previo us sect :c ns , it is clear that a program can be viewed ass

1 Establishing an exha ustive partition of the input space into mutually exc lusive
domatna each of which corresponds to an execu table path

2 specifying , for each domain, a set of assign ment statements which const itute the
domain com putatio n.

Thus we have a eaa.a~ ca 1 represea t atlo. of a program , which is a (poeaibiy i.nfiatt.I
set of pairs ( ( D 1 sf . j . 05 s f 5 ) .  ... (D1 f~ )...), w here D~ Is the i—t b domain, and f 1 is
the corresponding domain com putat ion function.

Given an incorrect program F , let us consider the changes in its canonical representat-
ion as a result of modifications performed on P. It is assueed that these modifications
are made using on ly permissib le Languag. constructs and result in a legal progr am.

Definition s A 4•.ala ~oeodar~ od~ t 1Cae1on occurs if the modification results in a
change in the D

~ 
component of some (Di7f i) pair in the canon ical representation .

Definition s A do.aia coeputat~ en . o d if j c a t l e r i  occurs if the modification results in

a change in the 
~i 

component of some 10t ’~~~ 
pair in the canonical representation .

Definition s A .i..sjsp pat h •odlticstios , occurs if the modification resqits in the

creation of a new pair such that Di is a subset of D
3 
occurring in s~~~ pair

• (D
3~

f,) irs the canonical representation of P. and f~ differs from f 1 .

Sotice that a particular modification say a change of some assignment stat~~~nt) can

be a modification of more than one type. In particular, a missing path modification

is also a domain boundary modification .

‘5
Th. errors that occur in a prog ram can be classified on the basis of the modification s

needed to obtain a correct program and con sequent changes in the canonical represent-

ation. In general, there will be many correct programs , and multip le waye to get a

particular correct program. Mence, the error classification is not unique, but rela-
tive to the particular correc t program that would result from the series of modifications.

Definitions. An incorrect program P can be viewed a. havi ng a dosa i ss .rror (coapetatiossa2
error ) (.~..1nç path error)  if a correct program P• can be created by a sequence of
mod ifications, at least one of wh ich is a domain boondary modification (domain c~~~utat-
ion modif icatio n ) (missi ng path modificat ion).

It

Several remarks are in order. the operational consequence of the phrase ‘can be viewed
as ’ in the above definition is that the error c lassification is relative not only to a
particular correct program, but also to a particular sequenc , of modi f icattons . Par
insta nce , consider ass error its a pred icate interpretation such that an incorrect relat-
iona l operator is employed. e g, use of ‘ instead of . This could be viewed as a
domain error , lead ing to a modification of the pred icate , or as a c~~~vtation error,
leading to a modification of the functions c~~~uted on the two branches. The fact that
it might be more profitable to change the relationa l operat or rather than the f~nct1on
c~~~vtatio na is a consequence of the language co nstru cts, and is not directly captured
5- the def initions of the t ype s of error. In th is paper we would regard an error due

“7

I -~~~~~~~~~~ - - - - —-—.— -~~~~- ~~~ -~~~~——_ _ _  __



~ - -~ -~ _

to an incorrect relational operator as a domain error; it is a s impler modification
to change the relational operator in the predicate than to interchange the act of assign-

ment stat ements.

Nor. sp ecific chara cter izations of these errors can be made in the context of the
sp ecific proqraaminq language which w~ have introduced. In part icular , the following
informal descript ion direct ly relates the domain and missi ng path errors to the prodi-
cate constructs a llowed in tho language.

A path contains a domain error if an error in some predicate inte rpretation causes a
border se~~~nt to be ‘ shifted’ from its correct position or to have an incorrect border
operator. A domain error can be caused by an incorrectly specified predicate or by an
incorrect assignment statement which affects a variable used in the predicate. An in-
correct predicate or assignment sta’eaent may af fect  many predicate interpretations
and consequent ly cause more than one borde r to be in error.

A path contains a missing path error when a predicate is missing which would s ubdiv ide
the domain and create a new execution path for one of the subdomains . This type of
error occurs when some special condition requiring different processing is omitted.

Fundamental lisitit &on~

Finite testing strategies are fundamentally limited by their inability to detect ph.no.-

ens occurring in regions which have zero volume or measure relative to the input space
or domain. The first of these Limi tations we shall define as co;rIc4d.ncal cor re c tne ss .
Zn testing each domain for the correctness of its boundaries, if the outp ut for a test

case is correct , it could b either that the test point was in the correct domain, or
that it was in a wrong domain but the computation in that donain coincidentally yie lded
a correct value for the teat point. Similarly, a domain computation could correspond

to an incorrect function, but its output may coincide with the correct value for a

particular test point, to be absolutely certain that the values are not coincidentally

correct, it would be necessary to ex2~austively test all the points of the domain.

The essence of the coincidental correctness problem is the same as that of the problem

of d.cidinq if two arbitrary compu tations are equivalent ; the latter problem is known
to be generally undecidable. However , in practice , the severity of the problem is re-

lated to the probability that for an arbitrary point this coincidence would occur. If

the set of points for which the two functions have the same value as of measure zero,

then this probability is sero, even though coincidental correctness is still possible.
So, even with coincidental correctness as a possibility , a testing strategy can be

almost re1iable in the sense of Nowd~n (009), if it would be reliable in the absence of
coincidental correctness, and the s.t of points which are coincidentally correct has
zero volume relative to the domain being tested.

Another basic limitation relates to missing path errors. When the subdømain associatei
with a missi ng path is a region of lower dimenslenality than the original domain , a

s1s a~ng pat hs error of ted.ced di•.ns; onailt t ~~curs . This typ ically happens when the
mi •s inq predicat e is an equality. If all that is available is ‘ust the (incorrect )
program to be tested, then the probabi l ity that a finite set of test points would do-
tact the missing predicate is zero, sinc, the volume of the subdomain is zero relative
to that of the original domain.

The proposed apcroacPi is capable of detecting many kinds of missing path errors, but

—

~

- - - ~~- - - -~~~~-. -~~~~~ ~-- - ------------ - --—rn- ------ 



for some of them the number of required test points is inordinate. Hence , in the n...t
section. where we describe the testing strategy , we will s imply assume that no m iss ing
path errors are associsted with the path being tested .

T~I 0015MW TEST lW~ STMTZ~~

The domain tasting strategy is designed to detect domain errors and wil l  be ef fect ive
in detecting errors in any typ. of domain border under certain conditions, Test points
are generated for each border segment which, if processed correctly , detsrm~ne that
both the relationa l operator and the pocition of the border are correct . An error in
the border operator occurs when an incorrect relational operator is used in the corres-
ponding predicate , and an er ror in the position of the border occurs when one or more
incorrect coefficients are computed for the particular predicate interpretation. The
strategy is baaed on a geometrical analysis of the domain bOundary and takes advant.iq .
of the fact that points on or near the border are most sensitive to domain errors. ~
number of authors have made this obeervation. • g. moyer .t a t (001) and Clarke (0 0 1 ).

An stated in P:opo.;egon 2 ,  a domain defined by simple linear predicates is a convex
polyhedron, and each point can be classified according to its position within the 4o
main. An ~ater1or polar is defined as on. which is surrounded by an c-neighbourhood
containing only points in the domain. Similarly, a bOl..v4ar~ point is one for which
every c-neighbourhood contains both points in the domain and points lying outside of
the domain. Finally, an •.tr..e po int is a boundary point which does not lie between
any two distinct points in the domain.

Zn the previous section . a comparison was made between the given program and a corres-

ponding correct program ; indeed domain errors were defined in terms of this correspond-

ence. It should be emphasised that the domain strategy does not require that the corr-

ect program be given for the selection of test points, since only information obtained

from the given pr o gram a s needed . However , it will be convenient to be able to refer

to a ‘correct border ’, although it will not be necessary to have any knowledge about this

border. Define the f ;v e n  border as that correspond ing to the predicate interpretation

for the given program being tested and the correct bard.: as that border which would

be calculated in some correct program.

The domain testing strategy is first developed , explained, and validated in detail under

a set of simplifying assumpt ions;

1 Coincidental correctness does not occur for any test case. If correct output results
are produced, we can assume that the test point is in the correct domain rather than
being coincidentally correct in another dom in.

2 A missing path error is not associated with the path being tested . Hissing path errors

of reduced dimensionality pos. a theoretica l limitation to the reliability of any

program testing methodology .

3 Each border is prod uced by a simple predL~ ate .

4 The path corresponding to each adjacent domain computes a different function than the
path being tested .

S Th. given border is linear, and if it is incorrect , the correct border is also linear.

“9

-~~~~~~~~~~~~~~~~~~_ _ _   



~ The input space is contin uous rather than discrete.

7 Each border is produced by an inequality predicate .

$ The input space is two-dimensional, corresponding to a program which reads, at moat,
two input variables.

The first two assumptions were thoroughly explored in the previous section. Assumptions

3 through S are for convenience in the initial exposition , end we shall investigate
later the cond itions aider which each can be relaxed. Also, references (003) and (004)
discuss both the domain strategy and these assumptions in greater detail.

Th. two-dimensional linear cese

Given asst ~~~tio ns 1 to S. a set of test po ints is first defined for detecting border
shifts , and then we shall show that this set of points also detects all possible relat-
ional operator errors. Since the present analysis is t~mited to linear borders in a

two—dimenalonal input space, each border is a line segment. Therefore, the correct

border can be determined if we know two points on that border,

The test cases selected will b. of two types, defined by their position with respect
to the given border. An Os t es t  po int lies on the given border , while an or? tes t
poise is a small distance c from , and lies on the open side of, the given border.
Therefore, we observ, that when testing a closed border, the OH test points ar, in the
domain be ing tested , and each OFF test point is in some adjacent domain. Conversely,

when testing an open border, each 014 test point is in same adjacent domain , while the
Oft test points are in the domain being tested .

Fiqiare 3 shows the selection of three test points, A, B , and C for a closed inequality
border segment. Zn this arid subsequent figures the small arrows are used to indicate the
domain which contains the border segment. The three points must be selected in an 015-

OFT-ON sequence . Spec i f i ca l ly ,  if test point C is projected down on line AR, then the
projected point mus t lie str ict ly between A arid B on this line segment. Also point C
is selected a distance from the given border segment , and will be chosen so that it
sat is f ies all the inequalities defining doma in 0 except for the inequality being tested.

It muse be shown that COst points selected in this way will reliably detect domain errors
du. to boundary shifts. If any of the test  po ints lead to an incorrect output , then
clearly there is an error . On the other hand , if the outputs of al l these po ints are
correct, then either the given border is correct or we have gained considerable inform-
ation as to the location of a correct border. Figure 3 shows that the correct border
must lie on or above po ints A and B, and must lie below point C. for by assumpt ions 1
and 4 (page 335), each of these test points must lie in its assumed domain . So if the
given border is incorrect , the correct border can only belong to a clam s of line seg-
ments which intersect both closed line segments AC and BC.

Figure 3 indicates a sp ecific correct border fro. this class which intersects line 5mg —
ments AC and BC at P and Q respectively. Define the doeain •rro r ssqnituie for this
correct border to be the max imum of the distan ces from P and from Q to the given border.
Then it is clear that the chosen test po ints have detected domain errors due to border
shifts except for a class of domain errors of magnitude less than c. In a continuoua
space c can be chosen arbitra rily small , and as r approaches sero , the line segments
AC and BC become arbitrarily close to the given border, and in the limit, we can conclude

350

_



~~~~—-

H

/

0
~~~~~~

E’

1

G iven ___________

a 

t bo~~er — — — —

?i~wse J. V.st polnta iot a twe—4~~~ne~onaJ ilneat bord.r

that the g iven border is identical to the correct border. However , the continuity of
the space also implies that regardless of how small is chosen, border shifts of nag-
nitud. lees than c may not be detected , and therefore we must correspondingly qualify

the o~r results .

>15-
Figure 4 shows the three general types of border shifts, and will allow us to see how
the ON—OFT-ON sequence of test points works in each case . In Figure 4 ( a ) ,  the border
shift has effectively reduced domain 0,. Test points A and I yield correct outputs ,

.4 for they remain in the correct domain D, despite the shifted border. Nowev•r, the
border has shifted past test point C, caus ing it to be in domain 0, instead of domain

reors 0,. Since the program will now follow the wrong path when executing input C, incorrect
results wil l be produced . In Figure 4(b) , the domain 0, has been en larged due to the
border shift. Here test point C will be processed correctly since it is still in
domain 0,, but both A and I will detect the shift since they should also be in domain

r 0,. Finally in Figure 4 (c), only test point I will be incorrect since the border shift
I causes it to be in 0, instead of 0,. Therefore , the ON -Oft-ON sequence is effective
Pie since at least one of the three points must be in the wrong domain as long as the border
- shift is of a magnitude greater than c.

aecall in Figure 3 that we required the 0?? point C to satisfy all the inequalities

eq defin ing domain 0 except for the inequality being tested. The reason for this require-
ment is that some correct bo rde r segment may terminate on the extension of an adjacent

der . border, rather than intersecting both line segments AC arid BC as we have argued. Since

er we have assumed a continuous space, C could always be chosen closer to the given border
in order to satisfy the adjacent border inequalities.

:clude We must also ds.onstrate the reliability of the method for d~~~in errors in which the

~51

~~~~ _ - -~~~~—~~~~~~~~~~~- -— _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I 0~ I I
I I

I ec
A I
-S

A C I ’

01 01

laJ

I
Gi,en border -* , S

A • —._ ~

Correc t border

0~

(C,

PIper. 4. f~~ CAres ty~~s of bo~~~r shAft.

predicate operator is incorrect. If the direction of the inequality is wrong , a g,
4 is used instead of B, the domains on either side of the border are interchanged , and
any point in either domain will detect the error. A mere subtle error occurs when just
the border itself is in the wrong domain, a q, S is used instead of c . In this case
the only point. affected lie on the border, and since we w lways test ON points, this
type of error will alwsys b. detected. If the correct predicate is an equality , the
OF? point will detect the error .

The domain t.atinq strategy require s at most 3C~ ~~st points for a domain, where P .
the ni~~ er of border s.qments on this bounda ry , is bound ed by the nuwh.r of predicates
enco unte red on the path . However, we can reduce this cost by sharing test points be—
tween adjacent borders of the domain. The requirement for sharing an ON point is
that it is an extreme point for two adjac ent borders which are both closed or both open.

351

- _
_ _ _ _

7

- .

a

a

A3
PIgvt. S~ ~~~~~~ test poI n ts f oi ’ cJ..ad aed opon ~~rdsrs

In the example in Figure S. the points that can be shared are A ,, I.,. said A ,. The

number of ON points needed to test t~e entire domain boundary can be reduced by as much
as one half , i a , the number of test points. TP , required to test the c~~~1ete domain

boemdary lies in the following range ,

2•P S ?P S 3 P .

twin more significant savings are possible by sharing the test points for a cc on
border between two adjacent domains. If both domains are tested independently , the
co~~~n border b tweea them is tested twics, using a total of six test points. If this
border has shifted, both domains must be affect ed , and the error will be detected by
testing either domain. Therefore , the second set of test po ints can safely be omitted.
However, the cost sav ing s in such shari ng should be balanced against the additional
processing required.

We now formally s~~~arise the results of this section in the following proposition.

Prep e .* Ites $

Given assumptions I through S (page 33B) , with the OF? test point chosen a distance t
fro. the correspond ing border, the domain testing strategy is guaranteed to detect all
domain errors of magnitude greater than C . Horeover. the cost is no more than 3 P test
points per domain, where P is the number of predicates along the correspondi ng path.

343

N—dimensi onal linear Inequalitie,

The domain tasting strateg y developed for the two—dimensional case can be extended to

the general H-dimensiona l case in a straightforward manner. The central property used
in the previoua analysis was the fact that a Line is uniquely determined by two points.

We can easily generalize this property since an N—d imensional hyperpla ne is determined

by N lins~rly independent points. So, whereas in the two—dimensional case we had to

identify only two points on the correct border , in general we have to identify N points

on the correct bord.r , and in addition, these points must be guaranteed to be linearly

independ ent.

The validatto~ of domain tasting for the general linear case is based on the same geo-

metric arguai.nts used in the two—dimensional case . The key to the methodology is that

the correct border must intersect every OFF-ON line segment , assuming that the test

po ints are al l correct. S~nc. we must identify a total of N points on the correct
border, w~ need N O?P-ON line segments, and we can achieve this by testing N linearly

Independent ON test points on the given border and a single OPT teat point whose pro-

3ectioei on the giver> border is a convex combination of these N points. Zn addition ,

~s in the two-dimensional case , the OF? point must also satisfy the inequality constraints

corresponding to a ll ad3acent borders.

Even thoug h we do not know these specific points at which the correct border inters e cts

the ON-OF? segments, we do know that these points must be linear ly independent since

the 0$ points are Li nesr ly independent. h. OF? point is a distance c from the given

border, and £n the limit as c approaches zero, each OFF-ON in, segmen t becomes arbi t-

raril y close to the given border. However , as in the two-dimensional case the c-limi-

tation means that only border shifts of magnitude greater than c will be detected .

‘The domain testing strategy requires at most (N.l) P test p oints per domain , where N

is ha dimensionality of the input space in which the domain is defined and P is thu

number of border segments in the boundary of the specific domain. However , we again
can reduce this test ing cost by ‘~sinq extreme points as ON test points. Each extreme

point is formed by the intersection of at least N border seq~’er>t s . and therefore one

point can be used to test up to N borders. In addition , extrem , points are also lin-

early independent. Each border must be tested by N ON points , and any points beyond
this are redundant, and so not all extreme p oints on each borde r are required . ha a
result of this kind of sharing , the number of test points can be as few ax Z’P. As

in the two—dimensional case , there can be fu r t h e r sav ings If test p oints are shared
between adjacent domains. Finally, since some of the P border .eqr>ents may be produced

by th. mm —sax constra ints wh ich define the bounds of the Inpu t space , the number of
test points can be reduced st il l further , if we can assume that these constraints are

predetermined and need not be tested .

This generalization to N dimensions is significant sine , vary few non-trivial programs

have only two inpu t variables. We surc!arise the results so far in the f o l l o wing propo
sit ion.

PrepositI.. 2

Given assumptions 1 to 7 (page 339), with the OFF test point chosen a distance c from
the corresponding border, the domain testing strategy is guaranteed to detect all
domain errors of magnitud e greater than c regardless of the dimen stonali ty of the in-
put space . Noreover , the coa t is ‘lot su re than (N.l)’P~t.st points p.r domain.

“II

.

~

.- ~~~ - -~~~~~~ .—
~~~~~~~~~
- -- --- 



Equality and noneguality predicstes

Equality predicates constrain the domain to Lie in a lower dimensional space. If we

have an N-dimensional input spac. and the doma in is constrained by I. independent equa l-
ities , the remaining irteq~iaiity arid nonaquality predicates than define the domain

within the (N-I.)-dtmensional subspace defined by the set of equality pred icates.

In Figure t we see the equality borde r and the prop osed set of test points. In a gen-
eral N—dtmenatonal domain , Let us first consider a total of N ON points on the border
and two OF? points, on. on either side of the border, As before , the ON points must

be independent, and the projection of each OF? point on the border must be a convex

combination of the ON points.

Given an incorrect equality predicate, 
~1the error could be either in the re— r -

~

lat ional operator or in the position I I
of th. border or both. The proposed I I
set of test points can be shown to de- I 

• I
teet an operator error or a position I I
error by arguments analogous to those I • 

~
previously given. This set ~f points I 

•is also adequate for a most all co.— I I
binatioris of operator and position I
errors, except for th~ foUowinq patho-
logical possIbility. 1..t us assume that 

~~~~~ ~~, ~~ point.. for an .qi~sZit > ~ border
the border has shifted and the c -,rr.ct -

predicate is a r>on.qualtty. If both
OFF points happen to li e on the correct border while none of the ON points belong to
this border , the error would go undetected . This singular situation is diagrameed as
the daahed border in Figure ‘. where A > and A 1 are the ON points , and C1 and C1 are

‘iven border

Correc t border —

\ a
\
\
\
\
\

~~~~~~~~~~~~~

Fl vte 7. 5 pl tho ioç~o.J ce~~ In ~~~~in t.etlnp for an eqvsJIt~ prediCate

315

— -~~~~~~~ -~—~~~ —~ ~~~~~~~~~~~~~~~ ~~~~~~-—- -~~~~~~~~ ~~ ~~~~~~~~~~~ —~~~~~~~~~ -.- —- -—--~~~~~~~~~~~~~~~~~~ - -~~~~~



r~
,r 

~~~~~~~
— —

~~
- _

the Or? points. This problem can be solved by testing one additional point selected

so that it lies both on the given border and the correct borde r for this case, i e, at
the int.rs.ction point of the given border with the Un. segment connecting the two

~)FF points . This additional point is denoted by B in the figure .

Each equa li ty predicate can thus be completely tested using a total of (N.3) teat points.

By sharing test points between a ll the equality predicates , this number can be consid—

arab ly reduced, but the reduction depends upon values of N and I.. In addition, since

testing the equa l ity predicates reduces the effective dimensionallty to (11-14 for each
of the inequality and norteguality borders, and the equality ON test points can b.

shared , even further reductions are possible.

For the case of a nonequality border, the testing strateg y is identical to that of the

equality border just discussed . The arguments for the validity of the strategy are

analogous to those in previous cases. Again in this case , the pathological po,sibility

discussed in connection with the equality predicate can occur, and can be handled in
the same way. The major difference is that while test pointa can be extensively shared

between equality arid inequality borders, in general such sharing is not possIble between

rionequality arid inequality borders. The following proposition s>~~ ariaes the situation
for testing linear borders in N-dimensions.

Prepe .liie* 4

..ven assumptions 1 through ~ page 339). with each 01’? point chosen a distance c from

the corresponding border , the domain testing strategy is guaranteed to detect all domain

errors .f magnitude greater than using no more than P (N.3) test points p.r domain.

&n~~ *aapLe of error detection using the domain strateq~

The domain testing strategy is, been described and vahidat.d using ao..whe t comp licated

alqebraic and geometric ar uments. Iri this section we hope to complement those discuss-

ions by demonstrating how a set of domain test point, for a short sample program actually

detects specific examples ~f differ ent types of proqra~~ Ing errors . Zn discussing cacti

error w~ wil l focua on a specific do..1n affected by th, error, and s careful analysis

of its effect on the domain will allow us to ident ify those domain test points which

detect the error.

Th. short exampl. program reads two values. I and .7, and pr oduces s single output value

N. Therefore , the inpu t space is wo-dlmerisionai, and the following vain-max constraints

have been chosen so that the inpu t space diagram would not be too large or complicated .

— S a 1 (5 — S S J S S.

In addition , since this is a two-dimensional sp ace , we will also test extreme points for

the border segments produced by the mm -sax constraints in order to be able to detect

as many missi ng path errors as possible.

Even though th. input space is assumed to be continuous, the co-ordinates of each test

point are specified to an accuracy of O’l in order to simplify the diagrams and discuss—
ions. Of course , in an actual implementation each 01’? point would be chosen much closer
to the bc der.

The sample progrem is Listed below, and it consists of th ree simple I~ co nstr ucts , the

356

r

-—

~

-

~

_ _ _

- -~ - -~ --~ - -— ~~~- - - - -- - —.~--~ --- -

‘i
i

4
TT~~~~~

TI’
V

.1. 2
I (TI

— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -, eea —
-5 -4 -2 4 6

En -

?lçmre S. Xnpst sp.ee ~~~~ in test points

first two of which are inequalities and the Last of which is an equality. The input

space structure is diajraemed in Figure 5, where the solid diagona l border across the

entire space is prod -~c.d by the first predicate, the dashed horizontal border and short

vertical border at 1—0 are produced by the second predicate, and the vertica l equality
border at I—S correspond s to the third predicate. Zn addition , domain test points
have been indicated for the two doma ins TiE and El’? which we will discuss.

S t a t em., t
s.abe,

51*0 1,Js
I If 1 4 . 7 . 1

a THIS B — I • .7 — it

3 LISt B — 3’X • 1:
(Not,,

4
S THIN 1. — I a 1:

• (LII I. • .7 — I;

END’,’

7 1 , 1 _ S

• TNLN M 2’L .B ,

9 (LIt N — 1, • J’K — 1;
(lOif,

WIIT(Ni

357

~

-~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

d l •l.S.. l I pl d 4~~ ll~~ •a,,l.4 •.,.n, C.,,... •,.d,fl.. V.., a~~.ai

.... . ‘. .,, .. ~~~~~~~~~~~~~~~~~~~~~ .l.ls.l ,. , ...,., . l , . . I

~~~~~

fll

P.4.1 a a’
VIZ l •  I~~I~~I . 4 ~ 481 II 11)1.31 313 3U 1 — 5 . 3 1  11 is

Ofl • . ) .~~.S  -4. 5 — a s
pi.44m1.v ~~~ ,•~~~ n •
.4.. Vi*.r. SI

rn i i  :5 *.i~ i—i  t z.,—,,
S.. 3. 1. -lI 3) it

~~~4$I. I i .) .51  3) it
5e P45 w. a,

I~~~ 4 4.0) 34 iS

~~~ I.I. Ii 3 .OI  U 55

..I, . t O l  3) 3)
3. ~~~4•I

riq .r• 5, D.t.ction at domain error. For ine q si alit ,, and •qua~~I t 4 ~ pre dicates

I. )

•-4

¶1T • 54//
f

4 . ITt
III A

3 )“I 

/
///

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—~~~ -~ —~~~
. -.e -• -s -2 6 8

/ i... (It
/ I

/~ t

1._ Eli

.2 (11 I
/ I I
‘
I, ~~~ i

/
1

~~~~~~ ~~~~- c~r~~ct Inpv t •~~~~ tot a ~~~~ in er~~r

.4

5-



r.T 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~
“

~~ “,. TIE
T IE TTT ~ - —

-
-
,

a LIE

— es. —
-5 -6 -4 -2

- 2 4 $

TEE
e •8

%

? 1

(EL i— LIE

-4 I

?iç.sJ’e ~1, Cor,-.ce is~pat spa ce for an .g . .al . t , pr.dicat. error

rigure ~ illust rates two types of errors we would ike to consider. The first is an
err i r in the in.quali’ , p r .d i - ate in statement ‘4 of the above program , (B a

where it i s assumed t~ a~ t~~. correct prs.d i:ate should be (B S I.2~~. This corresponds
to an InequalIty botd.t shttt , m d t~.e modified domain structure is shown In Figure 10.
Three points Nave be.n selec ted to test thi. border, and it :an be seen in Figure 9
t ha t th e two c~i points detect th is error, where N and N ’ represent t-. output variables
for the give n program and f~~r the assumed correct proqram respectively. Note that as
a result of this error, t~ e vertica~ border st 1—0 in Figure 5 has also shifted to 1—1
in Figure 10. snd it tested , would also reveal this error.

Figure ~ also ihows the effect of an error in an equalIty predicate in statement 57 of
the given prog ram . It is assurwd that the correct predicate should be (1 3—2) rather
than the (!-~~

) predicate which occurs in the given program . Figure 11 shows the mcdi—
fled inpu t space structure , and it can be seen that equality borders IT? and £1’? have
shifted . Figure 9 shows the five points which test the El’? boarder, and note that two
0(4 points both detect this ,hift .

Figure 12 indicates that the domain strategy can also detect a computation error and a
missing path error , even though we have previously noted that reliability cannot be
proven for these cases. The computation error arises from statement 56 in the given
program. where it Is ssst~~ d that the correct assignment statement for this ELSE clause
m a (L—I-2) instead of (L— ..7-1) which actually app ars in the given program. Since I, is
not seed in any subsequent predicate, this corresponds to a computation error rather
than a domain error. Thus th, input space structur, in Figure 5 is applicable for both
the given and the correct programs. Figure 12 shows the six test points which have
been hosen t~ test dosain TEE which is affected by this computation error. Fei&r of
the points should indicate the error, but note the teat results at -4, —5) are

319

~

~~~- --~~~~~~~~~~~~~~~ -—



— ~~~- - — -—~~— - - -

P

~~~~~ ,• .. •.... a.... .u.s. . . ..‘.. n.. d •• •• tnt a.,... ,•t .4 f l  e 111

t n 1 ~ 0’

VU IS liii L~~l — & , 11.81 Ii..$ 31 I — S . — ,))4 — h
4’- . %l S? —Il

a, ’.., -I I’Sl 4 S .40.1
5 s Pi.w, , 1 1 . ’i ’ iI .4’) S

I—..,, —ii —34
I).)) I) I)

~~a, 14.1 at. 5 4 4 . Is al4.4’
4..IaIl, •..,.. *.

VU ei I~~ 5,S.$..1.&i,
ias.. t. i a.ta III IPr .t ‘U)

ems ..a,
lass PI,.Se lOS 1481 l.l.J-$,

(555,,

- 5. - I S .53 .4
- - 4 , I l ‘41 ‘11
1 . 1 . 1 11 . S ‘4)

- 1 . - i - l I ‘4’) ‘4’)
I...,, —34 -II
S I _ i l I) ii

f3gar e 12, Deeectje., of a co.putaeaon error and .issinq pats error

t

-
0 t

:

4

~~~~~~~~~~~~~~~~~~~~

:

~~~~~~~~~~~~~

2

tT

~~

(TI

$

~~guiw n~ corrm.-t 1~~ut •pa’e for a ~3$a~~~ path er~~

~~0

~

— -- -

~

-— -.--- - -— -~~~~~~~_ - - - - ~~~~~~~~~~ -~~~~~~~~~~


~~~~~~~~~~~~~~~~~~ItaIly correct ; th. remaining ti p o t s  detect the error .

Suppose in program stat ement 12 the TNEI clause is replaced by the following coda.

THEN IF 2~.7 4 — S R I  — 40

THEN B • 3:

ILS( B — I • J . 1;

This corresponds to a mtssing path error and is indicated as such itt Figure 12. Fig-
use 13 shows how the domain TE~ is mcdtftsd by this missing path error, but not, that

only test point (-S. -S) detseta this error. If the 4 inequaLity in the missing predi-

cate had been an equality, this would have produced a missing path error of reduced

d tmsneionality . corresponding to a domain consisting of ~upt the line segment in Fig—
jr. 13. and wou ld have gone undetected,

IXTV4$IOt4S Or flit t~y4~i tN TZS’)INC S’IBAT!GY

Many assumptions ware required in presentIng the previous results , but to some extant
these ass um ptio ns were sade to allow a s imple exposition of th. domain tast ing strat egy .
This section wi lL discuss assumptIons 3, 4 , and S (page 339) which deal with compound
predicates, adjacent domains which cosput. the s ame function , and non-linear borders,

respectively. The treatment of these cases will certainly require additional test
points, and in some instances w il l demand extra processing which may render this teat-

lag approach impractical. However, one of the main ob~ect ives of this section : to
illustrate that non, of the assu mpt ions 3. 4, or S pose a theoretical Limitation to
the domain testing strategy which cannot be dealt with in some fashion .

~he general non-linear case

A finite domain tasting strategy canno t be effective for the universal class of non-
linear borders, ~~ut  we must determine whether this is caused by some fundamental diff-
erence between linear and non-linear functions , If the problem is that we are consider-
ing too general a class of borders , then we should be able to extend the methodology
to cover well-defined subclasses of non-linear futtetions . $owever, if the problem is

caue.d by some basic chara cter istic of non— linear borders, we will not be able to extend
domain testing to any class of non— linear functions.

For linear borders, we have ae.t~~ d that if the given border is linear, and if there
Is a domain error, then the correct border is also linear. Zn order to extend our
teet ing results to particular subclasses of non-Linear functions, such as quadratic or
cubic polynomials, we must assume that if the given non—linear border is in error, than
the correc t border ma in the same non-Linear class . This non—linear class will be speci-
f ied by B par et ars ,  for example , consider the general form of a two—dimensional
quadratic in terms of var iab les N and ‘f , where A, I, C,... are coefficients , and B • 6

AX’ • •T’ • CXT •DX . IT.? • 0.

Thee (5-1) points can be chosen in order to solve for these B coeffi c ients . For the
exampl, above, the five points (Ni, T 11. t • 1,...,S should sat isfy the following
system of eqv.tlonsi

351

—~~~~~~ 
- — 

— 

—----— - -----—--—— --—-——-- .—- -,- —



- .

Z~’ Y~’ X~T~ X i Y~ 1 A 0

I

• . . . . . C

~~~
‘

~1 z~ r~ ~~~
1 — o

£

z ’ ~~
‘ X,y~ ~ y, i F

&)efine an Lndepefldeat i.e of (k—I) points (Xi, ~~
as a set which can be used to solve

for tie coefficients, and thus dst.rmina a specific meober of tie non-linear class.

we can now formulate the general non-linear domain tasting strategy in terme of these
observations. (K-i) ON-OFF pairs of poin~.s are chosen such that the (5-1) 011 points
are independent and each OFF point is chosen a distance c from the corresponding ON

point. This requires 2’(k-l) test points per non—linear border. The (B-i) 0(4-OFF line
segments formed by this set of pairs have been chosen so that the only correct borders
which yield correct teat results must intersect eech of these Oh-OFF line segments.

for any particular correct border , the re are (5-1) independent intersect ion points,
which determines the borde r compl etely. Mote that the intersection points are mndspend—
eat if c is cnosen sufficiently small , since the ON points are ind.pendent for the given

border. A furtner requirement, as in the li~~ar case , is that all Oft points satisfy
all inequality border, other than the one being test.d.

Whi le a single OFF point was sufficient in the linear case. tne independence criterion
requires (K-i) Ofl’ points for eacn non-linear border. In the former case linearity

allowed the OFF point to be shared by all the ON points , since the linear independence

of tn, points identified as lying on the true border is guaranteed by the linear inde-
pendence of the ON points themselves. If we were to teat a non-Linear border with (1 l)

~‘,t point, and a single OFF point, we would be able to conclude that the cor:ect and
given borders intersect at (K- li points. Howeve r , we cannot conclude that these (5—1)

points are independent, we know of no selection criterion for the ON points whicn
would guarantee the independence of the intersection points using only one OFT point.
So an ef fect ive strategy requires the full set of 2’S test points , and unfortu nate ly K
grows ve ry rapidly as the dimenslonality and degree of non-linearity of the border in-

cre ases.

A two—dimensional non-Linear border is a very special case , and even though the general
strategy is e f fe c t ive , a slightly different testing strategy can be formu lated to re-
duce the ni~~ er of required test points. The basic difference is that the intersection

between two—dimensional non-linear borders from the same class is a finite set of points,

ute maximum n~~~er of which can be determined from the form of the function. For ex-

ample a pair of two-dl.enslonal quadratic curves can lntcrsect in at most four points.
This means that any set of more than four points cannot possibly lie on two distinct
quadrat ics , and any f ive po ints uniquely det. rm.ines a sp ecific quadratic. Therefore,
we do not have to worry about independence in the two-d imensional case • since any sat
of (B- a distinct po ints will produce a system of indep endent Linear equations. For
exampl e, any three distinct points can lie on at most one circle , since two circles
cannot have more than two points itt coemon.

we test a two—dimensional non-Linear border with K points. e q, six for a quadratic
select ion in an ON-OFF-ON-OfF..., sequence along the border as 4iaqra~~~d for the closed
border in Figure 14. Since the correct border must pass on or above the given border
at each ON point , and must pass below each OFF point, th. two borders must intersect

352

- —~~ -- - ~~~~~- -~-~~~~-- - ~~~ ~~~~~~~~~ ~,,- - . ~~~~~~~~~~~~

— .~~~

~~~~~~~~~~~~~~~

~l ven border —

Correct border - — — —
F~~vs. 14: Ibeej~~~. -~~~.w~om.1 non-tlsw.r bor~~,

an odd number of times, let us assume once , in each ON-OPT and OFF—ON interval along

the border. The K test points define (5-1) intervals on the border, each of which
must contain at least one intersection point. We have shown that these (K-i) points

must be independent, arid since they cannot lie on two distinct borders, the given
border must be correct within c. As a technical detail, it is also poasibl• that the
correct border may be tangent to the given border at an ON point, but if this occurs,

an argument involv ing the derivatives of th. two borders at that point can be invoked
to justify the choice of the test points for this two—d imensiona l case.

Although the domain strategy has been extended to non-linear boundaries , points must be
generated in a d~~~in defined by non- linear boundaries , requiring the solution of non—

linear systems of equations. Since this probably requires excessive processing for

arbitrary non-linear borders, it does not represent a very practica l approach .

Adjacent domain, which coliputi the samg function

If two •djacent domains compute the sane function , any test point selected for their

c~~~~n border is ineffective. a m o s  the same output values are computed for the test

point regar d less of the domain in which it lie,. We wil l d~~~ nstr ate how domain test-
ing can be modified to deal with this problem .

In Figure lS(s) , assuming domain D~ were be ing tested , we must compare the functions

calculated in domains O~ and D~ for test point A , 0, and 0. for I, arid 0, and 0, for C.

~ te of the major problems to be solved is the identification of these adjacent domains .

We sss’ e that when testing domain 0, the partitioning structure of the adjacent domains

and the program paths associated with these domains is not known. It would be very

comp licated to have to generate the domains which are adjacent to the border being tes-

ted.

Figure 13(b) illustrates an approach to this probl . The border being tested is shif-

ted para llel by a small d ista nce c ,  so that test points A and I now belong to adjacent

domains. 0, and 0., respectively . The modified progra. is then retested using test

po ints A and I. which will , as a by-product, identify the path, associated with these
two adjacent domains. We can then compare the outp ut for each test point before arid
after the shift. If It is different, then we can definitely conclude that the adjacent

domain computes a different function, and this test point cart safely be used. If the
output is the same for that test point, then we can conclude that either assumption 1
or 4 page 33~) is violated. Nowever, there Is no way to decide this, and the only

practica l approach is to use further test points. If w know that coincidental corr-

ectness cannot occur, then we cou ld conclude on th basi. of a single point that the

3”

_ _ _ _ _



_____

0~ 03 04

— cc

1 
-

at Ori g iMi  border _____________

Peturted bord er

03

A cC $ 

(5,

Plg~~. £3: Th. L~~eeJt ~catien .1 adJacent ~~~1me

adjacent domain computes the same function.

If two adjacent domains such as 0, and 0, in Figure 13(a) are found to compute the same
function, th•n in order to carry out the domain testing strategy on the given border,
new test points may have to be selected . For example , point A can no longer be used ,

and this requires ascerta in ing the border structure between 0, and D~. Thus a consid-

erab le amount of processing is required which is probably not practical.

In s~~~ary , a technique of testing each point twice will assure us that asst~~~tiOf$ 4
is valid , and this redundancy night be viewed as a reasonable price to pay to eliminate
this restriction . However , If an instance is found where the assumption Is not valid,
a basic theoretica l problem exists.

354

__________________________________ _ _ _ _ _ _ _ _ _ _  — ~~~~~~~~~~~~ —. 9



-~~~~~~~~~
---, .

~~

~~main testing for compound pred icates

Aas~~~tion 3 (page 339) stated that a path contained only simple predicates , and this
implied that the set of input points could be character ized qu ite si mply as a s ingle
c main. We aust consider what complications can occur for compound predicates, and how

the domain strategy can be generalized to test  paths containing these predicates.

The set of inputs corresponding to a path is defined by the path condition , consisting

of ste conjui~ction of the pred i cates encountered alon g the path. If a compound predi-

cat. of the form (C (i) AND CU•l)~ is encou ntered on the path , the path condition is
still a single conjunction of simple predicates , and th. only difference is that two

of the simple predicates are produced as a single branch point on the path. No modi-

fications of the domain testing strate gy are requ ired in th is case .

10wever. compound predicates using the $oolean operator OR are more complicated. Con-

sider a path containing the following predicat.st

C,. C,, ..., (Ci 05 C1~ 1J , ...
The patn condition in this case is the conjunction of these pred icates , and in standard
disjunctive norma l form z

IC, AND C, AND ... AND C~ AND ... AND C~ 3

OR IC , AND C, AND ... AND C~~ 1 AND ... AND Ct)
The set of input data points following this path consists of the union of two domains ,
each defined by the conjunction of simple predicates , and in general any number of tr,ese

domains are possible.

Aasum.inq linear predi cates , each of these domains is a convex polyhedron, but the do-

mains may over lap in arbitrary ways. The major problem caused by these compound predi-

cates is that the domains correspond to the same path , and the assumption that adjacent

domains do not compute the same function is violated. We identify these cases of im-

portance: domains wh i ch do not over lap, domains which partially overlap , and domains

wttich total ly over lap .

The first case is indicated in Figure 14(a). where domains 0, and 0, are defined by tne

compound predicate IC , OR C ,) ,  and domain 0, corresponds to some other path. In this

case our methodology can be applied to each domain separately, since the two domains

for this path are not adjacent.

In rig~,r. 14 c b ) ,  the domains partially overlap, where 0, u 0, is the domain defined by
C ,, and 0, u , Is the domain defined by C,. In the example we cannot test the domains
separately, since they are adjacent and the same function is computed in escn. For

example , any test point for C,, selected along that part of the border between 0, and

U,, is ineffective since the same results ar. computed for it in both of these regions.
So , in this case we must ensure that the adjacent domain assu mpt ion is satisfied by
selecting test po ints for C , and C, which lie in that part of the borde r adjacent to a
domain for so.s other path. In order to deal effect ively with this case, some extra

analysis w ill have to be made, first in orde r to identify this second case, and also
to identi fy the actual domain , which is no longer convex. The borders of this domain
are shown with a heavier line in Figure 14(b). This is probably no longer a practical

approach , especially for highe r dimensions.

355



T 03. 1
(a~

(5)

I ,

• 
Dl

(C,

Figere 14, ~~~ i ,w deli .wd vi ceapma,d OR pr.dic. ~~a

356

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  

The third case is shown in Figure 14(c) , where the domain 0, for predicate C, is a
subset of the Other domain , 0, i~ 0~ , which is obtained for predicate C:. This pres-

ents a serious problan since there are no test points for border ~ of domain 0, which

cast satisf y the adjacent domain assumption. and therefore B cannot be tested effectively.
The technique developed in the prevtoua section should help to identify this case.

lowever, even if this case could be idsnt iti ed , testing for border I is no longer a
practicai procedure .

so, in sumeary , a compound predicate of the form (Cl AND C23 Is the sane as two simple
predicates, and domain testing can be applied to a domain defined with this type of
compound predicate. n addition , if the compound predicate is of the fore (C , OR C,)

astd the domains ar. distinct , domain testing can be applied to each domain separately.
Nowever. if the domains overlap , this introduces the problem of adjacent domains which

c~~~ ate the same function . Although we say not find effective test poin ts for domains

which overlap in arbitrary ways. we can recognize this situation and identity It as a

border which cannot be tested effectively.

IR~)P AN ALYSZ~ QF DOPtAIN SOPDtNS AND DISCRtT! SPACES

An er ror analysis of doma in borders Is needed to resolve the following questions :

1 Now small should c be chosen in selecting an OrT test point for linear borders , and

where ar. optima l locations for the test points?

2 We required the OFF test point for a given border to satisfy all inequality borders

except that being tested : how do potential errors in other borders of the domain

affect this requirement?

3 What are the diff icult ies in applying domain testing in a discreet space or in a

space in which nuxerical value s can only be represented with finite resolution, and

can these difficulties be circumvented by taking reasonable precautions with the
ethod7

These and other error analysis problems are dealt with In detail In (012) . It is inter-
est ing to observe that the answers to questions 1, 2 and 3 all involve the same worst—
case situation: when two adjacent linear borders of the same domain are nearly parallel.
Figure 17 indicates the two cases which can ar Ise fro. adjacent linear borders which

are nearly parallel. Figure 17(a) showS a give n borde r seg ment LV in which the two
adjacent border segments U and PQ both sake large e .t.rAsi asçle . •j and •~~, near 1.0’,
with the given border LV. This leads to very small supp l~~~ntazy £a~ .r5a1 angles O~
and 0,, and esp.cially for 9,, this results in a very sharp ‘corner’ of the domain. In
Figure 17(b), the adjacent borders Pt and VQ are again nearly parallel to the given
border V . but a differen t case is creatsd. In this case , external angles •~ and •~are very small , and the internal angles 9, and 9, are both near 150’.

We will briefly argue in th is paper that one of t~tes. two situations Is the key to the
ana lysis of question s 1, 2. and 3. and we refer the reader to (0)2) for further details
and proofs. The best location for each of the three test points wilt be Indicated, and
it viii be shown how interacting border changes may affect the ioomtion of these test
points. The problem of domain testing in discreet spaces is briefly introduced , and a
seff ic ient condition is specified which guarantees that •ff ect ivs test points cast always
be ohoeest . Since all these arg uments are given only for two d imensions, a br ief d iscuss ion

“7

—~~ — — -—- - — — — — -
~

—

— - -~

—

-~~~~~ ~~~— w - ---~~~~:~.

r—,
F.— - -—. -------

~~~ 
—

~~~~~~

~~~
—--- —---— 

~~~
— — ______

c

(5)

riqvs. 17. Adjacent Seeder s~~~~nts vIuct, sr. n.eri~ pereii.l

wIll dea l with the generalizations to hiqher dimensions.

An .‘ror mea sur e for teat point Pe L.ctj~~

In Figur e i7 (a) . consider the selection of three test points A , I. and C for testing

border segmen t LV. It is shown in (012) that the best positions for two of them, say

A and N, are points £ and F, so the remaining problem is the location of test point C.

We have observed that if the gIven border LV is in error, then test points A, I and C

will tail to detect errors if the correct border is one which intersects line segmen ts
AC and IC. Thus gIven C which is at a distance c from the given border and halfway

between A and S. an appropriate error criterion could be the ‘n umb r ’ of er roneous
points which would be undetected, I a , the sr.a between t ?,. two borders , possibly

limi ted by ei ther or both of the extensions of the adjacent borders U and FQ. It can

be shown that this area measure can be bounded by the express ion

11 • lc cot •

where S Is the larger of I, and I,.

in order for this error measure to be fin ite, it I5 necessary that both I, and •, are

not too close to l10 for given c. If I cot S c c
F

. then the error measure Is in

the orde r of c U . This gives some guidanc, as to the choice of t for point C.

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  —~~-- -- -~~~~~~~~~~ --- ~~-~~~~-~~~~~~~ --—- - --~~~~ -~~~~~~~~~--— ~~~~--~~~-—- - ,—- . - _ _

Intgracting border seqmunts

In presenting the domain strategy , we required the OF? test point to satisfy all in-
equality borders except the border being tested. Usually this does not impose much of
a constraint on the choice of the OF? point, but Figure l’(b ) illustrates a situation
in which a severe constraint exists. We can show that

h .
(cot 5, • cot •,~

and since c h for choosing the OF? test point , this again shows the effect if either
5, or •~ or both are very small.

The same situation applies for interacting adjacent borders , and is illustrated in Fig-
ure Il. As long as the OFF points C1 and C, for each of the adjacent borders are chosen
sufficiently close to those borders, and th. externa l angles 5, and 5, are not too small.
then the adjacen t borders have a minimal influence on the selection of the OF? point C for
border LV. For example , point C must lie inside trianglu Lit) determIned by given borders
EP and FO. The correct borders which pose the worst case in limiting the selection of
point C are shown as dashed lines in rigure 15; these limiting correct borders are

determined by how close C, and C, have been chosen to their respective test borders.
As a result of these condition., point C is constrained to lie within triangle EFV , a

~~re restrictive condition than presented by triangle EFU . It should be clear that if
either I, or 5, is too sma ll, or either C , or C; t s chosen too tar from its respective
test border, the region fron wPti:h C could be chosen would become restrictively small.

I
i

_  

H
Given borders

Possible corvec t borders

0

Pipeae 15, Itf.ct of int.rsc-tSnç adjacent bord.rs on test point C

“9



- —-- ---- - 

atcieet space analy st.

the previous several sections have indicated that if adjacent borders are nearly par-

allel , then test point C is required to lie very close to the border being tested. lut

th a discreet space this could cause a severe problem, f o r  no discreet point may exIst

that close to the border. Similar problems exist for the ON test points A and I, for

it may not be possible to choose them at extreme points of the border.

For the discreet specs we shall consider a two-dimensional lattice , with uniform spac—
ing ~ in both dimensions. This models the situation where the same data representation.
integer or fixed-point. is used for two Input variables.

For simplicity , let us again assume that points A and B can be chosen as point. ! and

F. We shall present a sufficient condition for a given domain within this discreet

lattice which guarantees that an OFF point C can be chosen as a lattice point for each

border so that the area criterion is finite. The result is based upon the following
two observations. First, any e;rcle of diamater .~~ ~. always contains at least one

Lattice point. Second , from Figure i ( s ) ,  note that if either external  angles 5, or e,

are too near 1$0 , then the ~wi dth~ of the domain wi ll tend to be very small in terms
of the lattice resolution

sore formally, define the diaa.cer d of a convex polygonal domain to be th. shortest

distance from any extreme point to any domain edge not ad3acsnt to that extreme point;

this correspond. to our informa l ar~ u-’.nt about domain ‘width’ . The sufficient con-

dition can then be stated as,

Pr e p o p t l l e e  5

~iven a domain with diameter d in a lattice with resolution ~~ , if

d (—i \~. — (2~~l2)

then a Lattice OFF point can be chosen for every border, and moreover all external
angles 5 , and 5, are constrained by

cot e~ • cot ø~ ( 7q~—
It is clear t ha t  there are some domains ~n a ~iscres t space which cannot be tested , but
these are pathologica l cases where one ci ~~~ domain dimensions is ~ n the order of the
ia~ t 1c repolution . Nor.over, the result indicates a simple computation in terms of the

doma i n diameter to determine whe n such domains are presented for testing . For domains
which Can be tasted in a discreet space, the important result from Proposition S is that
a restriction has been obtained on angles 5, and 5, which precludes both ang les whiCh
are close to 150’ and angles which are too small.

f .x ter ,sion s of error an aLy sis to higher dimension s

The previous a rguments  h ave all been made for two dimensions, so it is important that
the essential ideas can be generalized to higher dimensions. We can observe that if
two border segments are adjacent , they are intersecting hyperpianes . Again, problems

- 

360

- - 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

say arise if these two hyperplar~es H , and H~ are nearly paral lel , and this can be meas-
ured by taicing the inner produc’ of their unit norma l vectors ñ , and ti ,, yielding the
cosine of the angle • between them,

cos • —

ThIs calculation is straightforward, and all the other error analysis issues can be
extended in a simi lar way . The reader should examine (O il) for further details.

C~~4CLUS!ONS AND FL1’t?R! WORX

TPt. basic goal of this research is to replace the intuitive principles behind current
testing procedures by a methodo logy based on a formal treatment of the prog ram testing
problem . Dy f~.rmulattng the problem in basic geometric and algebraic terms , we have
been able to develop an effective testing methodology whose capabilities can be precise ly
defined . In addition , since program testing cannot be completely effective , we have
identified the limitations of the strategy . In several cases th ese l imitat ions have
proven to b theoretical problem, inherent to the general program testing process.

The main contribution of this research is the development of the domain testing strat-
egy. Under certain well-defined conditions the methodology is guaranteed to detect
domain errors in linear borders greater than some small magnitude C . Furthermori , the
cost , as seas r.d by the nu~b,r of required test points, is reasonable and grow s only
linearly with both the dx ’enstonaltty of the inç~ t space domair~ and the number of path
predicate,. Domain testing also detects transformat ion errors and missing path errors
in many cases , but the detection of these two classes of errors cannot be guaranteed .

~~~atn testing ~as also been extended to classes of non-linear border., and we hav, shown
that the methodology generalizes to an, clas, of  functions vhich can be de,cr~b.d by
a f inite number of parameters. Un f o rt un ate ly, non-linear predicates pose prob.era of
extra proc..stnq which probabl y preclude testing except for restricted cases. For
example , just f~~dinq inters. c~.ton points of a set of linear and non-linea.r border• Can

require an inordinate amoun t of processing.

Coincidental c o r r e o t ness  is a theoretical limitation inherent to the proqra~ testing
process, and we have argued that it prevents any reasonable finite testing procedure
from being completely rel iab le. In partic~~ar, the poss ibility of coincidental correct-
ness means t’at an exhaustiv, test of all points in an input domain is theoretically
required to preclude the eaistence of computation errors on a path . Withi n the class

of all conpitable functions there exist functions w h i c h  coincide at an arbitrarily large
number of points, but if there is sufficient resolution in the output space , coincid-

ental correctness should be a rare occurrence for functions e~~~onLy encountered in data

processing problems .

The class of missin g path errors , parti cularly those of reduced dimensionality, has

proven to be another theoretical lim itat ion to the reliability of any finite testing

strategy . Althou gh our nethodoloqy cannot be guaranteed to detect all instance, of this

typ. of error, it can be extend ed to detect some well-defined subclasses of missing path

error.. Unfort unately, the extra cost of this modificat~ on may be unacceptab ly high.

Out analysis of missing path errors has shown that the cause of the d i ff icu lty Is that

the progra . 10.5 not contain any indication of the p ossible existence of a missing path

error. Therefore, without additiona l information , a reasonable testing strate g y for

361

-~~~~~~~



this class of errors cannot be formulated .

The domaIn testing strategy requIres a reasonable number of test points for a single

path, but th. total cost may be unacceptable for a large program contaIning an excess-
ive number of paths. In particular, this may occur for large program.. with complicated

control structures containing many iteration loops. Additional research Is needed to

reduce substantially the number of potential paths. One area being investigated is to

obtain appropriate restrictIon , on control structures , espec ially iteration loops , so
th at a l arge number of path, can be tested simultaneously for domain errors.  Another

approach is to develop an objective criterion to select a small subset Of paths which

yields the greatest te•ting information . A figure of merit must be defIned whIch re-

flects the value of a path as a candidate for test ing , and this measure must consider

both th, benefits and the cost of testing each path. For example , a very long and com-
plicated path containing many assignment statement s and predicates can test many aspects

of the program , but a larger number of test points are consequently required. There-

fore, the best candidate for testing might be a long path consisti ng of many aasiqnment

statements but few predicates. Also, In selecting the next path for testing we must

consider how the set of paths already chosen affects our current selection . We have

seen that a single error may affect many different paths, and the error can be detected

by testing any one of these paths. A third approach to reduce the number of paths is

to design and test small prog ram module ,, and then construct a testing strategy for the

ccssbination of these modules into large software systems. This is the most practical

solution to the teeting problem , but many techn ical and theoretical problems need to

be resolved . For example , in order to accomplish this, the comounication between mod-

ules will have to be appropriately r*stricted .

We have assumed that an ‘oracl e’ exists which can always determine whether a specIfic

test case has been computed correctly or not. In rea li ty , the prograrrer himself must

make thi. determination , and the time spent exami ning and analysing these test cases is

a major factor in the high cost of software development . One possible avenue for future

research would be to automate this process by using some form of inpu t/output specific-

ation. If the user provide s a forma l description of the expected result,, the correct-

ness of each t..t case can be decided automatically by determining whether the output

specification Is satisfied . This would reduce the cost of test ing tremendously, and

these new testing techniques would gain acceptance more quickly since the tedious task

of verifying test data would be elim inated. Zn addition , any extra information supplied

by the user might be usefu l in specifying special processing requirements which would

indicate the existence of a possible missing path error.

The domain test strategy is currently being implemented , and wil l  be utilized as an
experimental facility for subsequent research . Experiments should Indicat, what sort

of programaing errors are most difficult to detect, and should y ield extensive dynamic

test ing data. A most important contribution would be to indicate both proqra,e.ing

language constructs and programming techniques which are easier to test , and thus would

produce .or. reliable software.

362

_ _ 
- -~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- —- --- - -~ —-~ ------- -. .-~
-.- — -— -- —- --~-~~--~~~~ -- - -~~------ --~~ -—--- -~~-- ~~~~~~ —- - -~ - - - -~~ --~~~~-- .---~~~~. -- —

*&FLPLNCES

00) c~y~~ ~ 5, ti,sP~s B and 001 0000!NOUGN 3 1 and G J ~AR’~’ S L
L~~flTT K N Pewa,d a theory of tea t  data .electSos
sxr,scr — a formal aW at.s to: IlLS Trans on Software Log vol 11—1
t.atiag and d.buçqLn~ proqr.aa b V no 2 pp 154-173 (June 1973)
•~5hOZ1C •aecstion

Proc ‘75 Intl Conf on Ie1~~abZ.

Software pp 234-245 os Angeles CA

(April 1975) 001 WOWDEK N S

Netho4o1oq~ for the feseratl., .1 pte-
5t•5 teSt dat a
IlLS frame on Computers vol C-24 no S

002 CLASh L A pp 354-540 (May 1973)
a aV a ee e to p.ner.te teat data

aad •vsbolicaZ1 v •.ecs.t. profrae.

2111 Trans on Software 5mg vol

11—2 no 3 pp 213—322 (Sept l~ 76) 009 WOWD~ S W S

5eiiabi 2Lt ~~,t the path aaai~ sI. test-
isç atrate ~~
Ill! Trans on Software 1mg vol 31-2

003 COH!?4 S I and WHIrl L 3 no 3 pp 201—213 (Sept 1976)
a fI.~~te d..aLn-te.tlsp s t r a t e g y
for c..p.ter progra. t..t ~~ng

Tech Sep 77-13 Computer and In-
formation Sci Sea Centre The Ohio 010 K24tITM 0 1
State Univ (Aug 1977) as •.p~~r ace 1 •evd ~ of Poaraai program .

SPaS vol 1 no 2 pp 103—133

(April/June 1971)

004 C0ø~~ £ I

a f1a~~te  d o . a l n - t e , t l n g  str a te gy

fo r  eos p.t.r progra. test ing 011 SAJ4AISOORTIIY C V , NO S P and CH~~ N T
PhD Dissertation The Ohio State 0a the •vto.ated genera tion of p rog ram
Univ (June 1~ 7S) t ea t  data

IRS Trans on Software 1mg vol *1-2
no 4 pp 2~ 3—30O (Dec l9~6)

005 ~.ssorr S L
A ss..ticai protil . of eo.eerelai

P5/ i  program . 013 W1IITS 1. 3, TIIIG F C, Kt~ N C and
Sep no ~~J-l927 Comp Sci Dept COL~~AM 0 N
General Motor. lee abs Warren ~Z Ia •rr.r •a. lg. is  of the 4o..ia-t..t4ag
(Sept 1973) .erategg

Tech Sep no 75-2 C~~~uter and Znformatio~
Set Sea Centre The O tio State Un iv
(Aug 1975)

006 U.SNOFP 3 1.

As analp .i. of ao.e coa.ercial
P5/i profra..

1555 fran. on Software 5mg vol

11—3 no 2 pp 113—120 (June 1976)

363

-
~~~

-
~~~~

-— -
~
- -

~~~
-

~~~~~
— 

_;
—

~~~~

-

~~~ 

—



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -~~~~~~~~~~
- - - -~~--—

APPENDIX C

Froa: Rese.srch DireCtions in Software Techno1~ gy,~ P. Wegner , Ed., MIT Press ,
1979.

Discuui~~

A Discussion of
A SURVEY OF PROGRAM TESTING ISSUES

L.eJ Whit,. Edward I Cohen. and B Chandrasetaran
Ohio State Univ ersity, Columbus

In the survey paper on program testing . John Goodencugh identifies a
number of different possihle objectives for testing He indicates that with each
objective , the app roach to truing should be different The nest important point
emphass:ed is the need for more research and understanding of the basic testing
phenomenon in order that better techniuei can be designed based upon this
unclrrIyin~ ihe~r~ His turvet does not includ e some recent theoretical results
whic h ‘ive cause f~~~ optim ism ‘hi’ a theorelicalty sound program testing
meshorlok~ y will er,.~~~e We ~os,$d thut Ii~.r to h’pnr hit survey up to date by
gi ving a brief ccount of resuhs which are presented in greater dcliii in (1,21

The results to be reported have as their objective prc ’gidn (O?FvftIieiz ,

refe,rint to the Goodenough piper The conuruc ion and correctness of a
priwram •ç~

f 1~ i~~i.”i i~ a “ti ”-’!’ r,’’ir h prohlevn in i’s own right (as
emçshas itrd in t hu con(e,nsce) Tbui the paradiçm for this research will anurrie
that the program strUcture is specitied . t hat lest point; are to be selected to test
the program . . in i thai an oracir (or user) will be avai lable to indicate the
correctness or iororrectnris ~f inpul oulput pairs Furthermore, the appranch
w ill be that of p4ru~ ovt,nted c#”fftNfJI tlSttNg

A number of author; (e g . Howden (~J) have identified a denies grrer as
an error in the predicate of a program path in that a specific input will follow
the wrong pith due to an error in the control flow of the program. The
researc h reported in this discussion will obtain a finite (and reasonably small)
number of test points to completety test for a dOmair~ error slang a specific
program path The rtsult will be stated and suitably qualified below

The term domain errol’ arises from the fact that the set of distinct paths
In th. program partition the input space into regions or d.malfls .
Corresponding to each feasible pith there are one or more domains T
boundaries of each domain are determined by predicates in the con
statements s lang that path Recognition that these boundaries are typica
Is m ,er an the input variables has allowed ether investagatoes (Clarke (4) and
Bayer er at (31) to utilite linear programming techniques to obtain test points A
wrvey of f i f t y typica l data proressing programs has shown that virtually all of
the predicates srg linear foe ths; clan of programs Although mar original work
on domain testing assumed that the predicates were linear Nt the input variables.
we have since shown 121 that the technique extends to certain classes of nonlinia’
predicates

a- ~~

Discussion ItS

Next consider several problem; encountered by any type of testing, but in
particular by the proposed domain testi~ig approach The first problem might
be termed co.ncsdental com rectrieia , where although a test point is following the
wrong program path due to a control error, it coincidentall y yields the correct
output This problem will prove insurmountable (or ~~~ test point selection
strategy, and the only remed y is redundant test point wlectson Thus in the
domain testing result, we shalt assume coincidental correctneu does not occur, as
it should occur very rarely for practical programs Another problem is that of a
.uasing p~st4 error (also called a si~k4sf err.’ by Howden 1) 1) . in which a
required predicate is missin g from the program altogether This becomes
especially acute if the missing predicate is of an equality type along the path. for
then the reduction in dimnen sionaliry of the domain makes ii virtually impossible
to detect the error by test point selection No tr~s point selection strategy can
overcome problems of ~ususg p.M erro r s of rvdis~ d duneisssenolity. although the
proposed dornaais testing technique can be modified to detect other types of
missing path errors

The domain testing result can now be stated

Theorem Consider a computer program with linear predicates in terms of
the input variables Then assuming no coincidental correctness of any test
points, and exce pt for missing path error s , a convex polytope R in the input
space corresponding to a specific path in the program can be tested by a finite
number of point; a; to whether a pred icate error in the program Pta; ;hilted the
boundaries of R Moreover, the number of test points required is no more than
PN , where N ix the dimensionality of the input space and P is the number of
pred icate; a Iring the path

The above theorem is rather ~i~ni(i(ant In the area of program testing.
even exu ’iuding roincul ental c ’ r r r . ’n.t; and missing path errors, in no other
situation do ~r have results whic h cave as sa ra nc e of complete testing f or any
sort of error wi’h a finite number of test points Furthermore, the test points
selected for that purpose wilt also partially test the program for other types of
errors, viz . e”tputd tu~n errors , as identified by Howden 131 Only coincidental
correctness of the computational func t ion a long the path would mislead one
about the information provided by such points

The technique has also been extended to nonlinear predicates. Just as in
the linear case described above, the assumption her, is that if a predicate is
fou nd to be in error (thus leading to a domain change), the intended or ~correct
predicate is also in the same nonlinear cla ss Again this is not an unreasonable
assumption in most practical environments However, a larger number of test
points would have to be selected. dependmg upon the form of nonlinearity.

~~~~~~~~~~~ 



-

116 Dlicusslon

This research should provide a basis for path’oriented testing, but a
number of serious practical problems remain which must be addressed in order
to design a practical test generation system. Path selection is still a difficult
problem, and an estension of the work of Howden (6) is needed. Iteration loops
present a proliferation of unnecessary paths for domain testing. here Is where a
combination of verification and testing tethniques may provide a more practical
and yet solidly based approach The successful resolution of t hese and other
problems by rigorous research should provide subst antial testing guidance for
the design of large software systems.

Ref ereasces

I Cohen. F t  and White. U .  A Finite Domain’Teuing Strategy for Computer
Prostam ~~~~~ 

- Tr~chna ca I report 77 13. Computer and Information
Science Research Center. The Ohio State Universst~ August. 1977

2 Cohen. F I . A Finite Domain-Testing Strategy (oi Computer Program
Ta’siang. PhD Di;sp ti’ son , The Ohio St.i~r Universt iy. May 1978

3 Howd.n. W F. •Reliibility of the Path Anal ysis Testing Strategy, IEEE
Ti an; on Software En,~~ ‘ol SF2. .3. September 1976. 206’215

1 Clarke, L A , A System to Generate Test Data and Symbolically Execute
Programs, IEEE Trans on Software Eni. Vol SF2 b 3. September 1976.

5 Bayer. R W ,, tlspas. B . and Levitt . K N . SELECT A Formal System for
Testing and Debugging Prog rams by Symbolic Execution, Proceedints-
lO’~!, m t  Coni on Reliable Software 23i~2l5.6 Howden. W F. Met hodology foe the Generation of Program Test Data.
tUE Trans on Computers, Vol C-24. .5 Nay 1975 564 .560.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. ..

APP ENDIX D

Vms , Computer, March, 1979
T.s* tools: usslulniss generation routines and instrument.’ 37O~I68.Thomiaacommandtanguag.
must eztsnd to .v.ryday Lion for execution monitoring. The availabi. (or sel.ctive execution of
programmIng invlronmsnt results of dynamic analysis ar. based parts of SADAT.

on the performance of the program as SADAT appears to he a wefl.engh
B. C i n~raaáaran it ii executed for some inputs. On tb. neared, habitable tasting facility. with
Ohio Stat. University ~~ht~ ’ ~~~~ .ymbo& sx on~~~it thfl.~ nt tool’ integrated in a corn-

usterprstlve techniqu.— ’ .z.cut.s” pI.mentary manner.
Current .oftware tasting tools are ~~ program, but not for real inputs I.. Clarke presented the work of bar

designed to Iieip ib. testing pence.. Instead input is in symbolic form and group at the University of Mass.
by highlighting different .iurcesofs’ the saicution compute. symbolic chu..tt.s (co workers are Neal Ogden
roe in different ways. Each LOOI ü~~~~

. va lues for program and output and Daryl Wintersi in tb. design of a
ments a particular theory or approach variables system called Attest, to be used for
behaved best suited for uncovering syrnbobC execution of Fortran pro-
certain types or pattern, of errors. In- w.rk,lsoi, ~ -.~~t.u.n. ~~~

, ,~~ grams in the context of top-down
creasing evidence indicates that no sion was specifically devoted ~ ~~~

testing. The Attest interface desaip-
singl , tool will suffice to test a corn- tools, while other workshop papers Lion language AID enables the user to
p1ez program. A well-integrated co- contained some discussion of cx- describe both predicated and pee-
kcnon of tools, with each tool ap- perwnces with various test tool.. .iamsd relatIonshIPs among program
propeiat. for certain error types, will A. Amschler from Karisruhe. West vanabies. This (astute is important In
be needed for any serious testing (cd li- Germany co-authors were L Gmeinar top-down testing b r more generally, in
iy. This raises questions of research and U. Vops). presented b r group s testing using stubs for modules not

t interest—which combination of tools work in the design and implement.’ ~~ written), since the specifications of
provides th. best coverage across tion of an integrated testing system the modules can be stated by means of
types of errors? What ars the criteria called SADAT (presumably an .~~~ - AID commands, and symbolic execu-
tor integrating the tool. e.g.. some nvm for Static And Dynamic Analysis hon can pruceed as if the module Is.
tools might provide information and Testing) for testing Fortran ~~~~~ . wntt.nandconn.ct.d.AlDhascoodi-
w hich may be used u input toothersi? grams that have been compiled 01T’O(tional execution constructs for the
How do wp evaluate an integrated ire,. The main modules of SADAT are easy description of conditional pro’
facility as opposed so evaluating in~ static analyzer. dynamic analyzer. csdure computations in early versions
divsdual tools? test case generator , and pat h of. program. Fortran and AlDcanbe

An important considirstion in th. predicate calculator. The ~~~~~
freely mixed so that. module can be

usefulnes, of a tool is the degree to analyzer produces several tables executed normally or symbolically.
which it may be incorporated in an based on a ,implifi.d lexical analysis Attest also supports symbolic I/O. U.-
average programmer’s environment, of th. program sourc, cod. and also m i these features, the developer can
Tools for data flow analysis. (or in’ generates a reduced program graph produce successive refinements with
stance, ax, easily incorporated in such Several types of errors can be detected progress ively less AID and more
an .nvu ’onment , as are some execution at this stage. such as dead code. Lean code. Foe the class of application.
monitoring instrumentation facilities, undeclared or unused labels and wher, symbolic execution is useful,
Tools are also Ianguag..d.p.ndesst.. variables, and jumps into a loop. In ad- the Attest syst em can bring program

i.e., most tools are designed for handS dition, the output of the static creat.ion and testing closer together
ling programs written in one tan’ analysis phase serves as a dat,. base and help realize the promise of step-
guage. Modsiications will be needed so for later analysis, wise refinement,

adapt them to other languages. But SADAT s dynamic analysis docu- R. N. Taylor of Boeing Computer
more important is th. relation be. menu the execution of program test Services and L J. Osteruteil of the
tween tools and language constructs. runs. Basically this consists of instru• University of Colorado reported on
Foe instance, while current dat. flow m.nsation for the execution count. of their work in developing static and
analyst, techniques can handle most vanous branch points. A tabl. is dynamic testing Wchniqu.s for
single-peaces. programs, ther, is a printed giving the relative and ab- concurTent.process programs This
need for new analytic techniques for solute numbers of executions and work was performed in connection
dealing with concurrent-pror.ss pro. identifying thos. paths not executed with NASA-Langley’i Must program,
grams. The synchronization conS during the test runs. This dynamic which addresses the production and
struct. that charsctartz. the latter In- analysis is useful for identification of tasting of concurrent-procea. flight
troduce complex data and control flow dead code, determining correctness of software.
poesibihti.s. loop iterations, and optimization. Dynamic testing of single-process

It is useful to categorize cw’rentiy The test generation subsystem programs often includes generational
available software tools into three automatically generate. a subset of histograms. These describe a —

classes—at.tic. dynamic, and inter, paths with almost complete C1’cov- gram’s execution history by display.
pretive Static analysi. tool, work on erage (I.e.. each arc and each node Is i~~ ing counts of statement and branch
the structur, of the program and do pees.it.din at l.sstonepath lii addi- point executions Taylor and Oster~not involve execution. Facilities for Lion to the automatically generated well propoe.d the notion of a process-
data flow analysis and for gathering paths. the us r can specify a path as a sta re h.is eogrsin as an extension of this
information such as ci-oss’r,fer,nce sequenc. of statement.. technique for concurrent-process pro-
maps areezamplesof thiatypeof tool. The final module, not yet fully Ins- grams. F.ach time an es’sns change
Program verification I, also a static plensented, calculates path predicates takes place, a process state snapshot
analysis technique. Example. of by symbolic evaluation. The system Is is made indicating the state of dif-
dynamic analysis tool. Include path written In P1./I and runs on an IBM ferent processes. A sines of such

102 COMPUTER

-e

_ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~
.--

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

snapshots 1. used to comput. the pro- the approach forced them to make did iion, and auditing. For example, it is
cess’state histogram. Automatic in fact lead to the discovery of several esr.niAal to be able todiatinguisli test
monitoring of system deadlock errors, errors of this type. cases and toaccurataly describe them
which can occur in concurrent-process One of the accomplishments of the relative to program specification. and
programs, can be incorporated by us- workshop was the establishment of. testing goals. Test cases must be
lag several available algorithms, mechanism for the exchang. of infor’ repeatable. particularly for reel-time
Dynamic assertion verification can be mation on implemented test tools. Dr. systems. Testing must be auditable
extended to concurrent-process soft’ Selden Stewart of the National Bureau and documented so that the roitware
ware and is especially valuable to of Standards has consented so be the user or customer is assured that the
assure that scheduling and timing coordinator of his activity. If you are proper tests have been applied and in
constraints are as designed, interested, contact him at the N.- the proper manner,

Static analysis is often effective in tional Bureau of Standards. Tech
weeding out errors tisat are costlier to A-265. Washington, DC 20234. ~~

For th. purpose of discussing test
data generation, we can define testing

detect by dynamic testing techniques. 921-3485. He will be preparing a ques~
~, the execution of. program on finite

Extension of data flow analysis ~
tionnaire to obtain information about

concun’ent’process software reqwres available tools, their laniuaie and input in order to infer conformance to

more complex control flow models, mach ine constraints, documentation, specifications. Specifications agreed

The PAF—process augmented flow’ and corwijuons of release. upon by user and developer are usual-
ly incomplete or else lack ngnr and

graph—s. a concept designed to cap- With respect to future work in tool p oisson in many aspects. The user or
sure th. data and control flows in de%elopment. there is a real need for the tester may need to augment or
concur’r.nt process programs with ss’stsmalic e~aluatson of tools both in refine the specification so that the
scheduL, and wait statement., as syn’ the context of testing programs in result of any test I. precisely deter-
chrosuzauon constructs. The PAF and practical environments and in the con- mined. The tester ’ s problem then is so
associated algorithm. are capable ~

text of carefully coinrolled experimen- use spossibly .ugin.n t.d) specifics-
detecting errors due ~ .haX.d data tel situations . This will yield insights uonsalongwith accepted t.sungprin-
items being referenced by one process ~~~~~ the relationship betu sen CTTOt ciples and his own knowledg. to derive
befor. any other process defines them . ti pe~. tools, and types of tasks. Some propriat. seat cases.
In addition, certain anomalies in the other aspects requsnng attention in Man y workshop presentations
PAF indic.te the occurrence of poorly elude development of tools for , larger touched on is t data generation prob-
coordinated processes. W hile PAFs clafl’ of concurrenl process programs. lems. For example, the research on
are useful for a class of concurrent con- incor poration of tools into th. average progr.m mutation presented by Fred
structs. further work remains ~4 be programmer s environment , and S.vward of ~‘ale and others aims to
done for a broader class of 5yfl . human factors in tool design The last evaluate a programmer ’ s selected test
chroniz,atmon constructs, such asop.ri, aspect i’ important bec.us, it ~‘ cases, but does not define or prescribe
close, and ~~~~~ ~~~~~~~~

unlikek that softe are testing will how the test data is produced. Many
SI. iloithouse and M. Hatch of ‘°° ° become entirely automated The tools such as SADAT (developed by

An.lyuc Sciences Corporation di,’ human tester will continue to play Vag... Amschlet, and Gmeinar of
cussed their experience with a set of decisive interactive role, Karl,~~he. W est Germanyl include
tools inc luding ones for static computer analysis of program predi-
analysis, assertion processing, and Acknowlsdginent cases to help the programmer select
test data generation for a path test data to exercise all logical paths.
coverage based approach. Whale riseir I thank Dr Ion Clark and Dr. 1,. But solutions of the predicate. that
experience indica ted substant ial V~ bite for d,scus~ion’ helpful to me in would specify the needed data are not
benefits from th. interactive use if pu’epsnng this report. readily obtainabl, and are undec’ida.
these tools, they also discovered some ble in the general easel, so the pro.
potential Problems. Sometimes pro- . grarnmer must make his own analysis
sect son schemes are devised to make Test data 9.n.rat i three and frequently must choose test data
each module “robust” against its en •pproo cMs prevail by trial and error.
vironment. During integration, the The software testing field still lacks
protection scheme. of two modules D. W . Fife one technique, or a set of them, that
may overlap. causing some protection Nati ,n.l Bureau of Standards would be widely accepted as stiffi-
branches in the low-level module to ciently effective to be a conclusive
become unreachable. Another issue Is Test data generation could be de- testing method. It is commonly be-
large system testing. Each modulecan fined simply as a collection of tech- lieved that a minimum requirement Is
be tasted separately for high coverage. niques for creating valid Input data, to test every program statement and
but when they are integrated discoc- considered in terms of feasibility, branch as least once. This criterion is
tinuitie. in overall system flow may be economy, and efficiency. But it is more often marginal’ but can be sup-
difficult to detect. For loop test- important todiscuss test datagenera’ plemented by other criteria as
ing Holthouse and Hatch suggested tion in the overall context of test ing workshop participant Mark Halt’
that each loop be tested not only for it. practice. Testing practice includes the house of Analytic Sciences Corpora-
looping state, but also for a program testing methodology and tools that tiots described. As a proposed
flow not passing through the ioop at give the basis for test data generation minimum testing standard, this wer-
all. While th. testing tools they Italsosnvolves manyother issues thas rants a more extensive empirical
discussed cannot detect missing affect evaluation and acceptance of evaluation Sometime,, It leads to
paths. Holthou,e and Hatch pointed data generation methods, such as many more test eases than may be
out that the close software inspection testing administration, documents- economically acceptable. Also, It Is

March 1919 103

r

_ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~~~~

.
.

